{"title":"地震数据去噪的自监督多阶段深度学习网络","authors":"Omar M. Saad , Matteo Ravasi , Tariq Alkhalifah","doi":"10.1016/j.aiig.2025.100123","DOIUrl":null,"url":null,"abstract":"<div><div>Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow, as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses. However, finding an optimal balance between preserving seismic signals and effectively reducing seismic noise presents a substantial challenge. In this study, we introduce a multi-stage deep learning model, trained in a self-supervised manner, designed specifically to suppress seismic noise while minimizing signal leakage. This model operates as a patch-based approach, extracting overlapping patches from the noisy data and converting them into 1D vectors for input. It consists of two identical sub-networks, each configured differently. Inspired by the transformer architecture, each sub-network features an embedded block that comprises two fully connected layers, which are utilized for feature extraction from the input patches. After reshaping, a multi-head attention module enhances the model’s focus on significant features by assigning higher attention weights to them. The key difference between the two sub-networks lies in the number of neurons within their fully connected layers. The first sub-network serves as a strong denoiser with a small number of neurons, effectively attenuating seismic noise; in contrast, the second sub-network functions as a signal-add-back model, using a larger number of neurons to retrieve some of the signal that was not preserved in the output of the first sub-network. The proposed model produces two outputs, each corresponding to one of the sub-networks, and both sub-networks are optimized simultaneously using the noisy data as the label for both outputs. Evaluations conducted on both synthetic and field data demonstrate the model’s effectiveness in suppressing seismic noise with minimal signal leakage, outperforming some benchmark methods.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"6 1","pages":"Article 100123"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-supervised multi-stage deep learning network for seismic data denoising\",\"authors\":\"Omar M. Saad , Matteo Ravasi , Tariq Alkhalifah\",\"doi\":\"10.1016/j.aiig.2025.100123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow, as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses. However, finding an optimal balance between preserving seismic signals and effectively reducing seismic noise presents a substantial challenge. In this study, we introduce a multi-stage deep learning model, trained in a self-supervised manner, designed specifically to suppress seismic noise while minimizing signal leakage. This model operates as a patch-based approach, extracting overlapping patches from the noisy data and converting them into 1D vectors for input. It consists of two identical sub-networks, each configured differently. Inspired by the transformer architecture, each sub-network features an embedded block that comprises two fully connected layers, which are utilized for feature extraction from the input patches. After reshaping, a multi-head attention module enhances the model’s focus on significant features by assigning higher attention weights to them. The key difference between the two sub-networks lies in the number of neurons within their fully connected layers. The first sub-network serves as a strong denoiser with a small number of neurons, effectively attenuating seismic noise; in contrast, the second sub-network functions as a signal-add-back model, using a larger number of neurons to retrieve some of the signal that was not preserved in the output of the first sub-network. The proposed model produces two outputs, each corresponding to one of the sub-networks, and both sub-networks are optimized simultaneously using the noisy data as the label for both outputs. Evaluations conducted on both synthetic and field data demonstrate the model’s effectiveness in suppressing seismic noise with minimal signal leakage, outperforming some benchmark methods.</div></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"6 1\",\"pages\":\"Article 100123\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266654412500019X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266654412500019X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-supervised multi-stage deep learning network for seismic data denoising
Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow, as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses. However, finding an optimal balance between preserving seismic signals and effectively reducing seismic noise presents a substantial challenge. In this study, we introduce a multi-stage deep learning model, trained in a self-supervised manner, designed specifically to suppress seismic noise while minimizing signal leakage. This model operates as a patch-based approach, extracting overlapping patches from the noisy data and converting them into 1D vectors for input. It consists of two identical sub-networks, each configured differently. Inspired by the transformer architecture, each sub-network features an embedded block that comprises two fully connected layers, which are utilized for feature extraction from the input patches. After reshaping, a multi-head attention module enhances the model’s focus on significant features by assigning higher attention weights to them. The key difference between the two sub-networks lies in the number of neurons within their fully connected layers. The first sub-network serves as a strong denoiser with a small number of neurons, effectively attenuating seismic noise; in contrast, the second sub-network functions as a signal-add-back model, using a larger number of neurons to retrieve some of the signal that was not preserved in the output of the first sub-network. The proposed model produces two outputs, each corresponding to one of the sub-networks, and both sub-networks are optimized simultaneously using the noisy data as the label for both outputs. Evaluations conducted on both synthetic and field data demonstrate the model’s effectiveness in suppressing seismic noise with minimal signal leakage, outperforming some benchmark methods.