{"title":"传感器阵列上宽带多项式相位信号的序贯极大似然估计","authors":"Kaleb Debre , Tai Fei , Marius Pesavento","doi":"10.1016/j.sigpro.2025.110105","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel sequential estimator for the direction-of-arrival and polynomial coefficients of wideband polynomial-phase signals impinging on a sensor array. Addressing the computational challenges of maximum-likelihood estimation for this problem, we propose a method leveraging random sampling consensus (RANSAC) applied to the time-frequency spatial signatures of sources. Our approach supports multiple sources and higher-order polynomials by employing coherent array processing and sequential approximations of the maximum-likelihood cost function. We also propose a low-complexity variant that estimates source directions via angular domain random sampling. Numerical evaluations demonstrate that the proposed methods achieve Cramér-Rao bounds in challenging multi-source scenarios, including closely spaced time-frequency spatial signatures, highlighting their suitability for advanced radar signal processing applications.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"238 ","pages":"Article 110105"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential maximum-likelihood estimation of wideband polynomial-phase signals on sensor array\",\"authors\":\"Kaleb Debre , Tai Fei , Marius Pesavento\",\"doi\":\"10.1016/j.sigpro.2025.110105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a novel sequential estimator for the direction-of-arrival and polynomial coefficients of wideband polynomial-phase signals impinging on a sensor array. Addressing the computational challenges of maximum-likelihood estimation for this problem, we propose a method leveraging random sampling consensus (RANSAC) applied to the time-frequency spatial signatures of sources. Our approach supports multiple sources and higher-order polynomials by employing coherent array processing and sequential approximations of the maximum-likelihood cost function. We also propose a low-complexity variant that estimates source directions via angular domain random sampling. Numerical evaluations demonstrate that the proposed methods achieve Cramér-Rao bounds in challenging multi-source scenarios, including closely spaced time-frequency spatial signatures, highlighting their suitability for advanced radar signal processing applications.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"238 \",\"pages\":\"Article 110105\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168425002191\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425002191","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Sequential maximum-likelihood estimation of wideband polynomial-phase signals on sensor array
This paper presents a novel sequential estimator for the direction-of-arrival and polynomial coefficients of wideband polynomial-phase signals impinging on a sensor array. Addressing the computational challenges of maximum-likelihood estimation for this problem, we propose a method leveraging random sampling consensus (RANSAC) applied to the time-frequency spatial signatures of sources. Our approach supports multiple sources and higher-order polynomials by employing coherent array processing and sequential approximations of the maximum-likelihood cost function. We also propose a low-complexity variant that estimates source directions via angular domain random sampling. Numerical evaluations demonstrate that the proposed methods achieve Cramér-Rao bounds in challenging multi-source scenarios, including closely spaced time-frequency spatial signatures, highlighting their suitability for advanced radar signal processing applications.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.