具有离群值的马尔可夫跳变系统的分布式鲁棒信息滤波

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hongyu Zhu, Zhongliang Jing, Minzhe Li
{"title":"具有离群值的马尔可夫跳变系统的分布式鲁棒信息滤波","authors":"Hongyu Zhu,&nbsp;Zhongliang Jing,&nbsp;Minzhe Li","doi":"10.1016/j.sigpro.2025.110107","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the problem of distributed state estimation for linear Markov jump systems subject to state and measurement outliers. Initially, a robust local multiple model information filter is developed by integrating the traditional interactive multiple model framework with statistical similarity measure. This local filter is then extended to a distributed version via a diffusion-based information fusion strategy. Furthermore, based on stochastic stability theory, sufficient conditions are derived to ensure the boundedness of estimation errors in the mean square sense. The simulation results demonstrate the effectiveness of the proposed local and distributed multiple model filters in the presence of state and measurement outliers.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"238 ","pages":"Article 110107"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed robust information filter for Markov jump systems with outliers\",\"authors\":\"Hongyu Zhu,&nbsp;Zhongliang Jing,&nbsp;Minzhe Li\",\"doi\":\"10.1016/j.sigpro.2025.110107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the problem of distributed state estimation for linear Markov jump systems subject to state and measurement outliers. Initially, a robust local multiple model information filter is developed by integrating the traditional interactive multiple model framework with statistical similarity measure. This local filter is then extended to a distributed version via a diffusion-based information fusion strategy. Furthermore, based on stochastic stability theory, sufficient conditions are derived to ensure the boundedness of estimation errors in the mean square sense. The simulation results demonstrate the effectiveness of the proposed local and distributed multiple model filters in the presence of state and measurement outliers.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"238 \",\"pages\":\"Article 110107\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016516842500221X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016516842500221X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

研究了存在状态异常值和测量异常值的线性马尔可夫跳变系统的分布状态估计问题。首先,将传统的交互式多模型框架与统计相似度测度相结合,开发了一种鲁棒的局部多模型信息过滤器。然后通过基于扩散的信息融合策略将该局部过滤器扩展为分布式版本。在此基础上,利用随机稳定性理论,导出了估计误差在均方意义上有界的充分条件。仿真结果表明,在存在状态异常值和测量异常值的情况下,所提出的局部和分布式多模型滤波器是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed robust information filter for Markov jump systems with outliers
This paper studies the problem of distributed state estimation for linear Markov jump systems subject to state and measurement outliers. Initially, a robust local multiple model information filter is developed by integrating the traditional interactive multiple model framework with statistical similarity measure. This local filter is then extended to a distributed version via a diffusion-based information fusion strategy. Furthermore, based on stochastic stability theory, sufficient conditions are derived to ensure the boundedness of estimation errors in the mean square sense. The simulation results demonstrate the effectiveness of the proposed local and distributed multiple model filters in the presence of state and measurement outliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信