Yichen Lou , Yuqing Ma , Liming Xiang , Jianguo Sun
{"title":"具有缺失事件类型的左截尾和区间截尾竞争风险数据的灵活建模","authors":"Yichen Lou , Yuqing Ma , Liming Xiang , Jianguo Sun","doi":"10.1016/j.csda.2025.108229","DOIUrl":null,"url":null,"abstract":"<div><div>Interval-censored competing risks data arise in many cohort studies in clinical research, where multiple types of events subject to interval censoring are included and the occurrence of the primary event of interest may be censored by the occurrence of other events. The presence of missing event types and left truncation poses challenges to the regression analysis of such data. We propose a new two-stage estimation procedure under a class of semiparametric generalized odds rate transformation models to overcome these challenges. Our method first facilitates the estimation of both the probability of response and the probability of occurrence of each type of event under the missing at random assumption, using either parametric or non-parametric methods. An augmented inverse probability weighting likelihood based on the complete-case likelihood and data from subjects with missing type of event is then maximized for estimating regression parameters. We provide desirable asymptotic properties and construct a concordance index to evaluate the model's discriminative ability. The proposed method is demonstrated through extensive simulations and the analysis of data from the Amsterdam cohort study on HIV infection and AIDS.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"211 ","pages":"Article 108229"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible modeling of left-truncated and interval-censored competing risks data with missing event types\",\"authors\":\"Yichen Lou , Yuqing Ma , Liming Xiang , Jianguo Sun\",\"doi\":\"10.1016/j.csda.2025.108229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Interval-censored competing risks data arise in many cohort studies in clinical research, where multiple types of events subject to interval censoring are included and the occurrence of the primary event of interest may be censored by the occurrence of other events. The presence of missing event types and left truncation poses challenges to the regression analysis of such data. We propose a new two-stage estimation procedure under a class of semiparametric generalized odds rate transformation models to overcome these challenges. Our method first facilitates the estimation of both the probability of response and the probability of occurrence of each type of event under the missing at random assumption, using either parametric or non-parametric methods. An augmented inverse probability weighting likelihood based on the complete-case likelihood and data from subjects with missing type of event is then maximized for estimating regression parameters. We provide desirable asymptotic properties and construct a concordance index to evaluate the model's discriminative ability. The proposed method is demonstrated through extensive simulations and the analysis of data from the Amsterdam cohort study on HIV infection and AIDS.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"211 \",\"pages\":\"Article 108229\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947325001057\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325001057","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Flexible modeling of left-truncated and interval-censored competing risks data with missing event types
Interval-censored competing risks data arise in many cohort studies in clinical research, where multiple types of events subject to interval censoring are included and the occurrence of the primary event of interest may be censored by the occurrence of other events. The presence of missing event types and left truncation poses challenges to the regression analysis of such data. We propose a new two-stage estimation procedure under a class of semiparametric generalized odds rate transformation models to overcome these challenges. Our method first facilitates the estimation of both the probability of response and the probability of occurrence of each type of event under the missing at random assumption, using either parametric or non-parametric methods. An augmented inverse probability weighting likelihood based on the complete-case likelihood and data from subjects with missing type of event is then maximized for estimating regression parameters. We provide desirable asymptotic properties and construct a concordance index to evaluate the model's discriminative ability. The proposed method is demonstrated through extensive simulations and the analysis of data from the Amsterdam cohort study on HIV infection and AIDS.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]