具有人体运动和病毒库的寨卡病毒模型的径向基尺度共轭梯度神经网络处理

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Zulqurnain Sabir , Basma Souayeh , Muhammad Umar , Soheil Salahshour , Huda Alfannakh , S. Suresh Kumar Raju
{"title":"具有人体运动和病毒库的寨卡病毒模型的径向基尺度共轭梯度神经网络处理","authors":"Zulqurnain Sabir ,&nbsp;Basma Souayeh ,&nbsp;Muhammad Umar ,&nbsp;Soheil Salahshour ,&nbsp;Huda Alfannakh ,&nbsp;S. Suresh Kumar Raju","doi":"10.1016/j.chaos.2025.116711","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of current research is to find the numerical solutions of the nonlinear Zika model with human movement and reservoirs (ZMHMR) by designing a novel radial basis scale conjugate gradient neural network (RB-SCGNN). This nonlinear model contains ten different groups, and the numerical solutions are presented by the stochastic RB-SCGNN process. A design of dataset is presented through the Runge-Kutta scheme to lessen the values of the mean square error by splitting the data into training as 72 %, while 14 %, 14 % for both verification and testing. Fifteen neurons in the hidden layers, single input, and radial basis activation function are used to solve the ZMHMR. The accuracy of the proposed scheme is judged through the overlapping of the outputs, whereas smaller values of the absolute error indicate the exactness of the RB-SCGNN. Additionally, the statistical representations using different operators validate the approach's trustworthiness.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116711"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A radial basis scale conjugate gradient neural network process for the Zika model with human movement and reservoirs\",\"authors\":\"Zulqurnain Sabir ,&nbsp;Basma Souayeh ,&nbsp;Muhammad Umar ,&nbsp;Soheil Salahshour ,&nbsp;Huda Alfannakh ,&nbsp;S. Suresh Kumar Raju\",\"doi\":\"10.1016/j.chaos.2025.116711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The purpose of current research is to find the numerical solutions of the nonlinear Zika model with human movement and reservoirs (ZMHMR) by designing a novel radial basis scale conjugate gradient neural network (RB-SCGNN). This nonlinear model contains ten different groups, and the numerical solutions are presented by the stochastic RB-SCGNN process. A design of dataset is presented through the Runge-Kutta scheme to lessen the values of the mean square error by splitting the data into training as 72 %, while 14 %, 14 % for both verification and testing. Fifteen neurons in the hidden layers, single input, and radial basis activation function are used to solve the ZMHMR. The accuracy of the proposed scheme is judged through the overlapping of the outputs, whereas smaller values of the absolute error indicate the exactness of the RB-SCGNN. Additionally, the statistical representations using different operators validate the approach's trustworthiness.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116711\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925007246\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925007246","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是通过设计一种新型径向基尺度共轭梯度神经网络(RB-SCGNN),寻找具有人体运动和水库的非线性Zika模型(ZMHMR)的数值解。该非线性模型包含10个不同的组,并采用随机RB-SCGNN过程给出了数值解。采用龙格-库塔算法设计数据集,将训练数据分成72%,验证数据分成14%,测试数据分成14%,以减小均方误差。在隐藏层中使用15个神经元,采用单输入和径向基激活函数来求解ZMHMR。通过输出的重叠来判断所提出方案的准确性,而较小的绝对误差值表示RB-SCGNN的准确性。此外,使用不同运算符的统计表示验证了方法的可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A radial basis scale conjugate gradient neural network process for the Zika model with human movement and reservoirs
The purpose of current research is to find the numerical solutions of the nonlinear Zika model with human movement and reservoirs (ZMHMR) by designing a novel radial basis scale conjugate gradient neural network (RB-SCGNN). This nonlinear model contains ten different groups, and the numerical solutions are presented by the stochastic RB-SCGNN process. A design of dataset is presented through the Runge-Kutta scheme to lessen the values of the mean square error by splitting the data into training as 72 %, while 14 %, 14 % for both verification and testing. Fifteen neurons in the hidden layers, single input, and radial basis activation function are used to solve the ZMHMR. The accuracy of the proposed scheme is judged through the overlapping of the outputs, whereas smaller values of the absolute error indicate the exactness of the RB-SCGNN. Additionally, the statistical representations using different operators validate the approach's trustworthiness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信