Zulqurnain Sabir , Basma Souayeh , Muhammad Umar , Soheil Salahshour , Huda Alfannakh , S. Suresh Kumar Raju
{"title":"具有人体运动和病毒库的寨卡病毒模型的径向基尺度共轭梯度神经网络处理","authors":"Zulqurnain Sabir , Basma Souayeh , Muhammad Umar , Soheil Salahshour , Huda Alfannakh , S. Suresh Kumar Raju","doi":"10.1016/j.chaos.2025.116711","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of current research is to find the numerical solutions of the nonlinear Zika model with human movement and reservoirs (ZMHMR) by designing a novel radial basis scale conjugate gradient neural network (RB-SCGNN). This nonlinear model contains ten different groups, and the numerical solutions are presented by the stochastic RB-SCGNN process. A design of dataset is presented through the Runge-Kutta scheme to lessen the values of the mean square error by splitting the data into training as 72 %, while 14 %, 14 % for both verification and testing. Fifteen neurons in the hidden layers, single input, and radial basis activation function are used to solve the ZMHMR. The accuracy of the proposed scheme is judged through the overlapping of the outputs, whereas smaller values of the absolute error indicate the exactness of the RB-SCGNN. Additionally, the statistical representations using different operators validate the approach's trustworthiness.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116711"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A radial basis scale conjugate gradient neural network process for the Zika model with human movement and reservoirs\",\"authors\":\"Zulqurnain Sabir , Basma Souayeh , Muhammad Umar , Soheil Salahshour , Huda Alfannakh , S. Suresh Kumar Raju\",\"doi\":\"10.1016/j.chaos.2025.116711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The purpose of current research is to find the numerical solutions of the nonlinear Zika model with human movement and reservoirs (ZMHMR) by designing a novel radial basis scale conjugate gradient neural network (RB-SCGNN). This nonlinear model contains ten different groups, and the numerical solutions are presented by the stochastic RB-SCGNN process. A design of dataset is presented through the Runge-Kutta scheme to lessen the values of the mean square error by splitting the data into training as 72 %, while 14 %, 14 % for both verification and testing. Fifteen neurons in the hidden layers, single input, and radial basis activation function are used to solve the ZMHMR. The accuracy of the proposed scheme is judged through the overlapping of the outputs, whereas smaller values of the absolute error indicate the exactness of the RB-SCGNN. Additionally, the statistical representations using different operators validate the approach's trustworthiness.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116711\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925007246\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925007246","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A radial basis scale conjugate gradient neural network process for the Zika model with human movement and reservoirs
The purpose of current research is to find the numerical solutions of the nonlinear Zika model with human movement and reservoirs (ZMHMR) by designing a novel radial basis scale conjugate gradient neural network (RB-SCGNN). This nonlinear model contains ten different groups, and the numerical solutions are presented by the stochastic RB-SCGNN process. A design of dataset is presented through the Runge-Kutta scheme to lessen the values of the mean square error by splitting the data into training as 72 %, while 14 %, 14 % for both verification and testing. Fifteen neurons in the hidden layers, single input, and radial basis activation function are used to solve the ZMHMR. The accuracy of the proposed scheme is judged through the overlapping of the outputs, whereas smaller values of the absolute error indicate the exactness of the RB-SCGNN. Additionally, the statistical representations using different operators validate the approach's trustworthiness.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.