果园中的算法:基于嵌入式的苹果锈病专家应答系统

IF 5.7 Q1 AGRICULTURAL ENGINEERING
Astha Anand , Jian Shen , Armin Bernd Cremers , Marc Jacobs
{"title":"果园中的算法:基于嵌入式的苹果锈病专家应答系统","authors":"Astha Anand ,&nbsp;Jian Shen ,&nbsp;Armin Bernd Cremers ,&nbsp;Marc Jacobs","doi":"10.1016/j.atech.2025.101069","DOIUrl":null,"url":null,"abstract":"<div><div>As sustainable agricultural practices gain importance, the need for intelligent pest control decision-making has grown. This paper introduces SEEDS: Similarity-based Expert Embedding Decision System, a Retrieval-Augmented Generation (RAG) based agricultural question-answering (QA) system. It is built upon a domain-specific knowledge graph (KG), representing Cedar Apple Rust disease, its host and causative agents, plant defense molecules against apple rust infection, and various pesticides. Utilizing the OpenAI embedding model, the system generates embeddings for user queries and KG data, employing similarity metrics to rank KG entries, facilitating accurate and relevant pest control recommendations. SEEDS is a promising niche AI tool in plant protection, setting the stage for scalable, extensible QA frameworks in precision agriculture. The results signify not only a step forward in agricultural expert systems but also highlight the potential for expanding this approach to other crops and pests, marking a substantial advancement in the use of AI for agricultural pest control.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"12 ","pages":"Article 101069"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithms in the orchard: An embedding-based expert answering system for apple rust\",\"authors\":\"Astha Anand ,&nbsp;Jian Shen ,&nbsp;Armin Bernd Cremers ,&nbsp;Marc Jacobs\",\"doi\":\"10.1016/j.atech.2025.101069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As sustainable agricultural practices gain importance, the need for intelligent pest control decision-making has grown. This paper introduces SEEDS: Similarity-based Expert Embedding Decision System, a Retrieval-Augmented Generation (RAG) based agricultural question-answering (QA) system. It is built upon a domain-specific knowledge graph (KG), representing Cedar Apple Rust disease, its host and causative agents, plant defense molecules against apple rust infection, and various pesticides. Utilizing the OpenAI embedding model, the system generates embeddings for user queries and KG data, employing similarity metrics to rank KG entries, facilitating accurate and relevant pest control recommendations. SEEDS is a promising niche AI tool in plant protection, setting the stage for scalable, extensible QA frameworks in precision agriculture. The results signify not only a step forward in agricultural expert systems but also highlight the potential for expanding this approach to other crops and pests, marking a substantial advancement in the use of AI for agricultural pest control.</div></div>\",\"PeriodicalId\":74813,\"journal\":{\"name\":\"Smart agricultural technology\",\"volume\":\"12 \",\"pages\":\"Article 101069\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart agricultural technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772375525003028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525003028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

随着可持续农业实践变得越来越重要,对智能虫害控制决策的需求也在增长。介绍了一种基于检索增强生成(RAG)的农业问答系统SEEDS: similarity based Expert Embedding Decision System。它建立在一个领域特定知识图谱(KG)的基础上,代表了雪松苹果锈病、它的寄主和病原体、苹果锈病的植物防御分子和各种农药。利用OpenAI嵌入模型,系统为用户查询和KG数据生成嵌入,采用相似度指标对KG条目进行排名,促进准确和相关的虫害防治建议。SEEDS是植物保护领域一个有前途的小众人工智能工具,为精准农业中可扩展的QA框架奠定了基础。这一结果不仅表明农业专家系统向前迈进了一步,而且还突出了将这种方法扩展到其他作物和害虫的潜力,标志着人工智能在农业虫害防治中的应用取得了实质性进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Algorithms in the orchard: An embedding-based expert answering system for apple rust

Algorithms in the orchard: An embedding-based expert answering system for apple rust
As sustainable agricultural practices gain importance, the need for intelligent pest control decision-making has grown. This paper introduces SEEDS: Similarity-based Expert Embedding Decision System, a Retrieval-Augmented Generation (RAG) based agricultural question-answering (QA) system. It is built upon a domain-specific knowledge graph (KG), representing Cedar Apple Rust disease, its host and causative agents, plant defense molecules against apple rust infection, and various pesticides. Utilizing the OpenAI embedding model, the system generates embeddings for user queries and KG data, employing similarity metrics to rank KG entries, facilitating accurate and relevant pest control recommendations. SEEDS is a promising niche AI tool in plant protection, setting the stage for scalable, extensible QA frameworks in precision agriculture. The results signify not only a step forward in agricultural expert systems but also highlight the potential for expanding this approach to other crops and pests, marking a substantial advancement in the use of AI for agricultural pest control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信