非重复线性离散系统的鲁棒数据驱动频域ILC设计

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Wen-Yuan Fu , Xiao-Dong Li , Tao Qian
{"title":"非重复线性离散系统的鲁棒数据驱动频域ILC设计","authors":"Wen-Yuan Fu ,&nbsp;Xiao-Dong Li ,&nbsp;Tao Qian","doi":"10.1016/j.chaos.2025.116684","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces two robust data-driven iterative learning control (ILC) laws for linear discrete-time systems (LDTSs) with single input and single output (SISO), considering non-repetitive uncertainties in initial conditions, reference trajectories, and external disturbances. The proposed robust ILC laws are developed in frequency domain by using an innovative adaptive Fourier decomposition (AFD) method to approximate the unknown transfer function. They are entirely data-driven in the sense that the input and output (I/O) data of the controlled LDTS are utilized only without requiring any model knowledge beyond the minimum phase feature of the system. Consequently, the ILC tracking errors can be confined within a bounded region whose size can be adjusted by a suitable selection of learning gains. Notably, as the iteration-variant initial conditions, reference trajectories, and system disturbances are progressively repetitive, the designed ILC schemes can ultimately achieve perfect tracking of reference trajectories. Numerical simulations validate the presented robust data-driven ILC laws.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116684"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust data-driven frequency-domain-based ILC designs for non-repetitive linear discrete-time systems\",\"authors\":\"Wen-Yuan Fu ,&nbsp;Xiao-Dong Li ,&nbsp;Tao Qian\",\"doi\":\"10.1016/j.chaos.2025.116684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article introduces two robust data-driven iterative learning control (ILC) laws for linear discrete-time systems (LDTSs) with single input and single output (SISO), considering non-repetitive uncertainties in initial conditions, reference trajectories, and external disturbances. The proposed robust ILC laws are developed in frequency domain by using an innovative adaptive Fourier decomposition (AFD) method to approximate the unknown transfer function. They are entirely data-driven in the sense that the input and output (I/O) data of the controlled LDTS are utilized only without requiring any model knowledge beyond the minimum phase feature of the system. Consequently, the ILC tracking errors can be confined within a bounded region whose size can be adjusted by a suitable selection of learning gains. Notably, as the iteration-variant initial conditions, reference trajectories, and system disturbances are progressively repetitive, the designed ILC schemes can ultimately achieve perfect tracking of reference trajectories. Numerical simulations validate the presented robust data-driven ILC laws.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116684\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925006976\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925006976","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了两个鲁棒数据驱动的迭代学习控制(ILC)律,用于单输入单输出(SISO)线性离散时间系统(ldts),考虑初始条件、参考轨迹和外部干扰的非重复不确定性。采用创新的自适应傅立叶分解(AFD)方法逼近未知传递函数,在频域建立了鲁棒ILC律。它们完全是数据驱动的,即受控LDTS的输入和输出(I/O)数据仅被利用,而不需要任何超出系统最小相位特征的模型知识。因此,ILC跟踪误差可以被限制在一个有界区域内,该区域的大小可以通过适当选择学习增益来调整。值得注意的是,由于迭代变初始条件、参考轨迹和系统扰动是逐步重复的,所设计的ILC方案最终可以实现对参考轨迹的完美跟踪。数值模拟验证了所提出的鲁棒数据驱动ILC律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust data-driven frequency-domain-based ILC designs for non-repetitive linear discrete-time systems
This article introduces two robust data-driven iterative learning control (ILC) laws for linear discrete-time systems (LDTSs) with single input and single output (SISO), considering non-repetitive uncertainties in initial conditions, reference trajectories, and external disturbances. The proposed robust ILC laws are developed in frequency domain by using an innovative adaptive Fourier decomposition (AFD) method to approximate the unknown transfer function. They are entirely data-driven in the sense that the input and output (I/O) data of the controlled LDTS are utilized only without requiring any model knowledge beyond the minimum phase feature of the system. Consequently, the ILC tracking errors can be confined within a bounded region whose size can be adjusted by a suitable selection of learning gains. Notably, as the iteration-variant initial conditions, reference trajectories, and system disturbances are progressively repetitive, the designed ILC schemes can ultimately achieve perfect tracking of reference trajectories. Numerical simulations validate the presented robust data-driven ILC laws.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信