{"title":"矩阵mKdV模型的对偶相似变换和可积约简","authors":"Wen-Xiu Ma","doi":"10.1016/j.physleta.2025.130727","DOIUrl":null,"url":null,"abstract":"<div><div>This work aims to construct dual similarity transformations and explore integrable reductions of matrix modified Korteweg–de Vries (mKdV) models. Starting from the zero-curvature formulation, the study employs similarity transformations as the principal tool. Four representative scenarios of reduced Ablowitz–Kaup–Newell–Segur matrix spectral problems are analyzed, providing concrete examples of reduced matrix mKdV integrable models derived through dual similarity transformations.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"554 ","pages":"Article 130727"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual similarity transformations and integrable reductions of matrix mKdV models\",\"authors\":\"Wen-Xiu Ma\",\"doi\":\"10.1016/j.physleta.2025.130727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work aims to construct dual similarity transformations and explore integrable reductions of matrix modified Korteweg–de Vries (mKdV) models. Starting from the zero-curvature formulation, the study employs similarity transformations as the principal tool. Four representative scenarios of reduced Ablowitz–Kaup–Newell–Segur matrix spectral problems are analyzed, providing concrete examples of reduced matrix mKdV integrable models derived through dual similarity transformations.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"554 \",\"pages\":\"Article 130727\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960125005079\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125005079","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文旨在构造对偶相似变换并探索矩阵修正Korteweg-de Vries (mKdV)模型的可积约简。本研究从零曲率公式出发,采用相似变换作为主要工具。分析了约简ablowitz - kap - newwell - segur矩阵谱问题的四种典型情形,给出了通过对偶相似变换导出的约简矩阵mKdV可积模型的具体实例。
Dual similarity transformations and integrable reductions of matrix mKdV models
This work aims to construct dual similarity transformations and explore integrable reductions of matrix modified Korteweg–de Vries (mKdV) models. Starting from the zero-curvature formulation, the study employs similarity transformations as the principal tool. Four representative scenarios of reduced Ablowitz–Kaup–Newell–Segur matrix spectral problems are analyzed, providing concrete examples of reduced matrix mKdV integrable models derived through dual similarity transformations.
期刊介绍:
Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.