多智能体系统的分布式安全控制设计与概率安全验证

IF 5.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Han Wang, Antonis Papachristodoulou, Kostas Margellos
{"title":"多智能体系统的分布式安全控制设计与概率安全验证","authors":"Han Wang,&nbsp;Antonis Papachristodoulou,&nbsp;Kostas Margellos","doi":"10.1016/j.automatica.2025.112393","DOIUrl":null,"url":null,"abstract":"<div><div>We propose distributed iterative algorithms for safe control design and safety verification for networked multi-agent systems. These algorithms rely on distributing a control barrier function (CBF) related quadratic programming (QP) problem assuming the existence of CBFs. The proposed distributed algorithm addresses infeasibility issues of existing schemes via a cooperation mechanism between agents. The resulting control input is guaranteed to be optimal, and satisfies CBF constraints of all agents. Furthermore, a truncated algorithm is proposed to facilitate computational implementation. The performance of the truncated algorithm is evaluated using a distributed safety verification algorithm. The algorithm quantifies safety for multi-agent systems probabilistically by means of CBFs. Both upper and lower bounds on the probability of safety are obtained using the so called scenario approach. Both the scenario sampling and safety verification procedures are fully distributed. The efficacy of our algorithms is demonstrated by an example on multi-robot collision avoidance.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"179 ","pages":"Article 112393"},"PeriodicalIF":5.9000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed safe control design and probabilistic safety verification for multi-agent systems\",\"authors\":\"Han Wang,&nbsp;Antonis Papachristodoulou,&nbsp;Kostas Margellos\",\"doi\":\"10.1016/j.automatica.2025.112393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose distributed iterative algorithms for safe control design and safety verification for networked multi-agent systems. These algorithms rely on distributing a control barrier function (CBF) related quadratic programming (QP) problem assuming the existence of CBFs. The proposed distributed algorithm addresses infeasibility issues of existing schemes via a cooperation mechanism between agents. The resulting control input is guaranteed to be optimal, and satisfies CBF constraints of all agents. Furthermore, a truncated algorithm is proposed to facilitate computational implementation. The performance of the truncated algorithm is evaluated using a distributed safety verification algorithm. The algorithm quantifies safety for multi-agent systems probabilistically by means of CBFs. Both upper and lower bounds on the probability of safety are obtained using the so called scenario approach. Both the scenario sampling and safety verification procedures are fully distributed. The efficacy of our algorithms is demonstrated by an example on multi-robot collision avoidance.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"179 \",\"pages\":\"Article 112393\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109825002870\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825002870","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出分布式迭代算法用于网络多智能体系统的安全控制设计和安全验证。这些算法依赖于分布控制障碍函数(CBF)相关的二次规划(QP)问题,假设CBF存在。提出的分布式算法通过agent间的协作机制解决了现有方案的不可行性问题。得到的控制输入保证是最优的,并且满足所有智能体的CBF约束。此外,为了便于计算实现,提出了一种截断算法。使用分布式安全验证算法对截断算法的性能进行了评估。该算法利用cbf对多智能体系统的安全性进行概率量化。使用所谓的情景方法得到了安全概率的上界和下界。场景抽样和安全验证程序都是完全分布的。通过多机器人避碰实例验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed safe control design and probabilistic safety verification for multi-agent systems
We propose distributed iterative algorithms for safe control design and safety verification for networked multi-agent systems. These algorithms rely on distributing a control barrier function (CBF) related quadratic programming (QP) problem assuming the existence of CBFs. The proposed distributed algorithm addresses infeasibility issues of existing schemes via a cooperation mechanism between agents. The resulting control input is guaranteed to be optimal, and satisfies CBF constraints of all agents. Furthermore, a truncated algorithm is proposed to facilitate computational implementation. The performance of the truncated algorithm is evaluated using a distributed safety verification algorithm. The algorithm quantifies safety for multi-agent systems probabilistically by means of CBFs. Both upper and lower bounds on the probability of safety are obtained using the so called scenario approach. Both the scenario sampling and safety verification procedures are fully distributed. The efficacy of our algorithms is demonstrated by an example on multi-robot collision avoidance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automatica
Automatica 工程技术-工程:电子与电气
CiteScore
10.70
自引率
7.80%
发文量
617
审稿时长
5 months
期刊介绍: Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field. After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience. Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信