{"title":"非对称超晶格磁隧道结中增强的自旋传递转矩","authors":"Seyed Ali Hosseini Moradi , Nader Ghobadi , Sajad Esfandyari , Reza Daqiq","doi":"10.1016/j.jmmm.2025.173276","DOIUrl":null,"url":null,"abstract":"<div><div>We systematically investigate charge current dynamics and spin-transfer torque (STT) in asymmetric superlattice magnetic tunnel junctions (MTJs) featuring distinct ferromagnetic electrodes: CoFeB and La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub>. They incorporate both regular and engineered barrier-height profiles. The profiles include linear, Gaussian, Lorentzian, Pöschl-Teller, and anti-reflective designs. We use the non-equilibrium Green’s function formalism within the effective-mass tight-binding framework. STT is quantitatively evaluated under applied bias conditions. The study reveals that asymmetric MTJs exhibit marked enhancement in spin-transfer torque compared to symmetric counterparts. This improvement results from the interplay of asymmetric magnetization magnitudes and orientations. Custom barrier profiles optimize spin-polarized current transmission and angular momentum transfer. These findings deepen understanding of spin-dependent transport in complex MTJ architectures. These results highlight a promising pathway for advancing spintronic device performance, particularly in applications requiring efficient magnetization switching and low-power operation. The demonstrated approach offers a compelling strategy for designing next-generation spintronic components by leveraging structural asymmetry and barrier engineering to achieve superior STT efficiencies.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"629 ","pages":"Article 173276"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced spin-transfer torque in asymmetric superlattice magnetic tunnel junctions with engineered barrier profiles\",\"authors\":\"Seyed Ali Hosseini Moradi , Nader Ghobadi , Sajad Esfandyari , Reza Daqiq\",\"doi\":\"10.1016/j.jmmm.2025.173276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We systematically investigate charge current dynamics and spin-transfer torque (STT) in asymmetric superlattice magnetic tunnel junctions (MTJs) featuring distinct ferromagnetic electrodes: CoFeB and La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub>. They incorporate both regular and engineered barrier-height profiles. The profiles include linear, Gaussian, Lorentzian, Pöschl-Teller, and anti-reflective designs. We use the non-equilibrium Green’s function formalism within the effective-mass tight-binding framework. STT is quantitatively evaluated under applied bias conditions. The study reveals that asymmetric MTJs exhibit marked enhancement in spin-transfer torque compared to symmetric counterparts. This improvement results from the interplay of asymmetric magnetization magnitudes and orientations. Custom barrier profiles optimize spin-polarized current transmission and angular momentum transfer. These findings deepen understanding of spin-dependent transport in complex MTJ architectures. These results highlight a promising pathway for advancing spintronic device performance, particularly in applications requiring efficient magnetization switching and low-power operation. The demonstrated approach offers a compelling strategy for designing next-generation spintronic components by leveraging structural asymmetry and barrier engineering to achieve superior STT efficiencies.</div></div>\",\"PeriodicalId\":366,\"journal\":{\"name\":\"Journal of Magnetism and Magnetic Materials\",\"volume\":\"629 \",\"pages\":\"Article 173276\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetism and Magnetic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304885325005086\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885325005086","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced spin-transfer torque in asymmetric superlattice magnetic tunnel junctions with engineered barrier profiles
We systematically investigate charge current dynamics and spin-transfer torque (STT) in asymmetric superlattice magnetic tunnel junctions (MTJs) featuring distinct ferromagnetic electrodes: CoFeB and La0.7Sr0.3MnO3. They incorporate both regular and engineered barrier-height profiles. The profiles include linear, Gaussian, Lorentzian, Pöschl-Teller, and anti-reflective designs. We use the non-equilibrium Green’s function formalism within the effective-mass tight-binding framework. STT is quantitatively evaluated under applied bias conditions. The study reveals that asymmetric MTJs exhibit marked enhancement in spin-transfer torque compared to symmetric counterparts. This improvement results from the interplay of asymmetric magnetization magnitudes and orientations. Custom barrier profiles optimize spin-polarized current transmission and angular momentum transfer. These findings deepen understanding of spin-dependent transport in complex MTJ architectures. These results highlight a promising pathway for advancing spintronic device performance, particularly in applications requiring efficient magnetization switching and low-power operation. The demonstrated approach offers a compelling strategy for designing next-generation spintronic components by leveraging structural asymmetry and barrier engineering to achieve superior STT efficiencies.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.