{"title":"设计一个知识增强的框架来支持供应链信息管理","authors":"Peng Su, Dejiu Chen","doi":"10.1016/j.jii.2025.100874","DOIUrl":null,"url":null,"abstract":"<div><div>With globalization and outsourcing trends, modern industrial companies often rely on an extensive network of suppliers to construct sophisticated products. To maintain effective production planning and scheduling, integrating and managing the extensive information from supply chain has become increasingly critical. In particular, industrial companies, particularly those aiming to achieve Industry 4.0, enable to collect and analyze data related to their supply chains. Due to the vast amount of collected data, there is a continuous challenge in integrating and analyzing dependencies within the supplier network. While the development of Artificial Intelligence (AI) offers a promising solution for extracting and analyzing features from data, the inherently opaque and training-intensive nature of AI-enabled methods still present obstacles to effectively and efficiently analyzing information. To cope with this issue, this paper presents a knowledge-enhanced framework to support supply chain information integration and analysis by combining Knowledge Base (KB) and Graph Neural Networks (GNN). Specifically, constructing a KB enables the integration of extensive collected data with domain knowledge to generate structured and relational information. These knowledge-enhanced data support the training of GNN to encode information about supply chains. The resulting embeddings enable multiple inference tasks for analyzing graph-based data, supporting supply chain management. The case studies cover the usage of encoded embeddings for node classification, link prediction, and scenario classification. The proposed GNN outperforms baseline methods, demonstrating a promising solution for analyzing graph-based data in the context of supply chain management.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"47 ","pages":"Article 100874"},"PeriodicalIF":10.4000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing a knowledge-enhanced framework to support supply chain information management\",\"authors\":\"Peng Su, Dejiu Chen\",\"doi\":\"10.1016/j.jii.2025.100874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With globalization and outsourcing trends, modern industrial companies often rely on an extensive network of suppliers to construct sophisticated products. To maintain effective production planning and scheduling, integrating and managing the extensive information from supply chain has become increasingly critical. In particular, industrial companies, particularly those aiming to achieve Industry 4.0, enable to collect and analyze data related to their supply chains. Due to the vast amount of collected data, there is a continuous challenge in integrating and analyzing dependencies within the supplier network. While the development of Artificial Intelligence (AI) offers a promising solution for extracting and analyzing features from data, the inherently opaque and training-intensive nature of AI-enabled methods still present obstacles to effectively and efficiently analyzing information. To cope with this issue, this paper presents a knowledge-enhanced framework to support supply chain information integration and analysis by combining Knowledge Base (KB) and Graph Neural Networks (GNN). Specifically, constructing a KB enables the integration of extensive collected data with domain knowledge to generate structured and relational information. These knowledge-enhanced data support the training of GNN to encode information about supply chains. The resulting embeddings enable multiple inference tasks for analyzing graph-based data, supporting supply chain management. The case studies cover the usage of encoded embeddings for node classification, link prediction, and scenario classification. The proposed GNN outperforms baseline methods, demonstrating a promising solution for analyzing graph-based data in the context of supply chain management.</div></div>\",\"PeriodicalId\":55975,\"journal\":{\"name\":\"Journal of Industrial Information Integration\",\"volume\":\"47 \",\"pages\":\"Article 100874\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Information Integration\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452414X25000974\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X25000974","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Designing a knowledge-enhanced framework to support supply chain information management
With globalization and outsourcing trends, modern industrial companies often rely on an extensive network of suppliers to construct sophisticated products. To maintain effective production planning and scheduling, integrating and managing the extensive information from supply chain has become increasingly critical. In particular, industrial companies, particularly those aiming to achieve Industry 4.0, enable to collect and analyze data related to their supply chains. Due to the vast amount of collected data, there is a continuous challenge in integrating and analyzing dependencies within the supplier network. While the development of Artificial Intelligence (AI) offers a promising solution for extracting and analyzing features from data, the inherently opaque and training-intensive nature of AI-enabled methods still present obstacles to effectively and efficiently analyzing information. To cope with this issue, this paper presents a knowledge-enhanced framework to support supply chain information integration and analysis by combining Knowledge Base (KB) and Graph Neural Networks (GNN). Specifically, constructing a KB enables the integration of extensive collected data with domain knowledge to generate structured and relational information. These knowledge-enhanced data support the training of GNN to encode information about supply chains. The resulting embeddings enable multiple inference tasks for analyzing graph-based data, supporting supply chain management. The case studies cover the usage of encoded embeddings for node classification, link prediction, and scenario classification. The proposed GNN outperforms baseline methods, demonstrating a promising solution for analyzing graph-based data in the context of supply chain management.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.