单元件精益直喷燃烧系统火焰动力学特性研究

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Mohamad M. Ghulam, Kranthi Yellugari, Shyam S. Muralidharan, Yuvi Nanda, Ephraim J. Gutmark
{"title":"单元件精益直喷燃烧系统火焰动力学特性研究","authors":"Mohamad M. Ghulam,&nbsp;Kranthi Yellugari,&nbsp;Shyam S. Muralidharan,&nbsp;Yuvi Nanda,&nbsp;Ephraim J. Gutmark","doi":"10.1016/j.expthermflusci.2025.111541","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores how the equivalence ratio, inlet air temperature, confinement ratio, and exit boundary influence flame dynamics in a single-element, low-emission nozzle used in a lean direct injection combustion system. Using high-speed OH* chemiluminescence and sound pressure measurements, the research identifies three flame types—V-flame, M−flame, and lifted-distributed flame—with distinct behaviors. At higher equivalence ratios, the V-flame type shows axial fluctuation modes, in-phase coupling with the acoustic field, and higher sound intensity. This is highlighted by the near match in frequency between flame mode (830 Hz) and sound pressure (822.6 Hz), suggesting flame-acoustic interaction. In contrast, the M−flame, found at lower equivalence ratios, exhibits radial fluctuation modes, out-of-phase acoustic decoupling, and lower sound intensity. Sound intensity shows a linear correlation with equivalence ratio; as lean blowout (LBO) nears, the flame structure becomes incoherent, and turbulence dominates external noise. Increasing the inlet temperature or adding an exit plate shifts the flame anchoring point upstream. Higher inlet temperatures lower air density, raising axial velocity and shrinking inner recirculation zones, promoting a V-flame near the nozzle exit. Similarly, adding an exit plate increases the pressure gradient in reverse flow regions, pushing the flame upstream. Inlet temperature amplifies axial fluctuation modes, while the exit plate enhances an axial-radial fluctuation mode. Larger confinement ratios, such as 6.9 and 9.6, enlarge the inner recirculation zone and favor radial fluctuation modes, with sound pressure levels shifting by up to 15 dB during flame structure transitions. These parameters influence the LBO limit, critical for NOx emissions.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"169 ","pages":"Article 111541"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of flame dynamics in a single-element lean direct injection combustion system\",\"authors\":\"Mohamad M. Ghulam,&nbsp;Kranthi Yellugari,&nbsp;Shyam S. Muralidharan,&nbsp;Yuvi Nanda,&nbsp;Ephraim J. Gutmark\",\"doi\":\"10.1016/j.expthermflusci.2025.111541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores how the equivalence ratio, inlet air temperature, confinement ratio, and exit boundary influence flame dynamics in a single-element, low-emission nozzle used in a lean direct injection combustion system. Using high-speed OH* chemiluminescence and sound pressure measurements, the research identifies three flame types—V-flame, M−flame, and lifted-distributed flame—with distinct behaviors. At higher equivalence ratios, the V-flame type shows axial fluctuation modes, in-phase coupling with the acoustic field, and higher sound intensity. This is highlighted by the near match in frequency between flame mode (830 Hz) and sound pressure (822.6 Hz), suggesting flame-acoustic interaction. In contrast, the M−flame, found at lower equivalence ratios, exhibits radial fluctuation modes, out-of-phase acoustic decoupling, and lower sound intensity. Sound intensity shows a linear correlation with equivalence ratio; as lean blowout (LBO) nears, the flame structure becomes incoherent, and turbulence dominates external noise. Increasing the inlet temperature or adding an exit plate shifts the flame anchoring point upstream. Higher inlet temperatures lower air density, raising axial velocity and shrinking inner recirculation zones, promoting a V-flame near the nozzle exit. Similarly, adding an exit plate increases the pressure gradient in reverse flow regions, pushing the flame upstream. Inlet temperature amplifies axial fluctuation modes, while the exit plate enhances an axial-radial fluctuation mode. Larger confinement ratios, such as 6.9 and 9.6, enlarge the inner recirculation zone and favor radial fluctuation modes, with sound pressure levels shifting by up to 15 dB during flame structure transitions. These parameters influence the LBO limit, critical for NOx emissions.</div></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":\"169 \",\"pages\":\"Article 111541\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177725001359\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177725001359","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了等效比、入口空气温度、约束比和出口边界如何影响用于精益直喷燃烧系统的单元件低排放喷嘴的火焰动力学。通过高速OH*化学发光和声压测量,研究确定了三种火焰类型- v型火焰,M型火焰和提升分布火焰-具有不同的行为。在较高的等效比下,v型火焰表现为轴向波动模式,与声场呈同相耦合,声强更高。火焰模式(830 Hz)和声压(822.6 Hz)之间的频率接近匹配突出了这一点,表明火焰-声音相互作用。相比之下,在较低等效比下发现的M−火焰表现出径向波动模式、非相声去耦和较低的声强。声强与等效比呈线性相关;随着稀薄井喷(LBO)的临近,火焰结构变得不连贯,湍流主导了外部噪声。提高入口温度或增加出口板使火焰锚点上游移动。较高的入口温度降低了空气密度,提高了轴向速度,缩小了内部再循环区域,促进了喷嘴出口附近的v型火焰。同样地,增加一个出口板增加了回流区域的压力梯度,将火焰推向上游。入口温度放大轴向波动模式,而出口板增强轴向-径向波动模式。较大的约束比(如6.9和9.6)扩大了内部再循环区域,有利于径向波动模式,在火焰结构转变过程中声压级变化高达15 dB。这些参数影响LBO限值,这对NOx排放至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of flame dynamics in a single-element lean direct injection combustion system
This study explores how the equivalence ratio, inlet air temperature, confinement ratio, and exit boundary influence flame dynamics in a single-element, low-emission nozzle used in a lean direct injection combustion system. Using high-speed OH* chemiluminescence and sound pressure measurements, the research identifies three flame types—V-flame, M−flame, and lifted-distributed flame—with distinct behaviors. At higher equivalence ratios, the V-flame type shows axial fluctuation modes, in-phase coupling with the acoustic field, and higher sound intensity. This is highlighted by the near match in frequency between flame mode (830 Hz) and sound pressure (822.6 Hz), suggesting flame-acoustic interaction. In contrast, the M−flame, found at lower equivalence ratios, exhibits radial fluctuation modes, out-of-phase acoustic decoupling, and lower sound intensity. Sound intensity shows a linear correlation with equivalence ratio; as lean blowout (LBO) nears, the flame structure becomes incoherent, and turbulence dominates external noise. Increasing the inlet temperature or adding an exit plate shifts the flame anchoring point upstream. Higher inlet temperatures lower air density, raising axial velocity and shrinking inner recirculation zones, promoting a V-flame near the nozzle exit. Similarly, adding an exit plate increases the pressure gradient in reverse flow regions, pushing the flame upstream. Inlet temperature amplifies axial fluctuation modes, while the exit plate enhances an axial-radial fluctuation mode. Larger confinement ratios, such as 6.9 and 9.6, enlarge the inner recirculation zone and favor radial fluctuation modes, with sound pressure levels shifting by up to 15 dB during flame structure transitions. These parameters influence the LBO limit, critical for NOx emissions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信