Jun Koseki*, Chie Motono, Keisuke Yanagisawa, Genki Kudo, Ryunosuke Yoshino, Takatsugu Hirokawa and Kenichiro Imai*,
{"title":"基于混合溶剂分子动力学模拟的拓扑数据分析的隐口袋检测","authors":"Jun Koseki*, Chie Motono, Keisuke Yanagisawa, Genki Kudo, Ryunosuke Yoshino, Takatsugu Hirokawa and Kenichiro Imai*, ","doi":"10.1021/acs.jcim.4c0211110.1021/acs.jcim.4c02111","DOIUrl":null,"url":null,"abstract":"<p >Some functional proteins undergo conformational changes to expose hidden binding sites when a binding molecule approaches their surface. Such binding sites are called cryptic sites and are important targets for drug discovery. However, it is still difficult to correctly predict cryptic sites. Therefore, we introduce an advanced method, CrypToth, for the precise identification of cryptic sites utilizing the topological data analysis such as persistent homology method. This method integrates topological data analysis and mixed-solvent molecular dynamics (MSMD) simulations. To identify hotspots corresponding to cryptic sites, we conducted MSMD simulations using six probes with different chemical properties: dimethyl ether, benzene, phenol, methyl imidazole, acetonitrile, and ethylene glycol. Subsequently, we applied our topological data analysis method to rank hotspots based on the possibility of harboring cryptic sites. Evaluation of CrypToth using nine target proteins containing well-defined cryptic sites revealed its superior performance compared with recent machine-learning methods. As a result, in seven of nine cases, hotspots associated with cryptic sites were ranked the highest. CrypToth can explore hotspots on the protein surface favorable to ligand binding using MSMD simulations with six different probes and then identify hotspots corresponding to cryptic sites by assessing the protein’s conformational variability using the topological data analysis. This synergistic approach facilitates the prediction of cryptic sites with a high accuracy.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 11","pages":"5567–5575 5567–5575"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jcim.4c02111","citationCount":"0","resultStr":"{\"title\":\"CrypToth: Cryptic Pocket Detection through Mixed-Solvent Molecular Dynamics Simulations-Based Topological Data Analysis\",\"authors\":\"Jun Koseki*, Chie Motono, Keisuke Yanagisawa, Genki Kudo, Ryunosuke Yoshino, Takatsugu Hirokawa and Kenichiro Imai*, \",\"doi\":\"10.1021/acs.jcim.4c0211110.1021/acs.jcim.4c02111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Some functional proteins undergo conformational changes to expose hidden binding sites when a binding molecule approaches their surface. Such binding sites are called cryptic sites and are important targets for drug discovery. However, it is still difficult to correctly predict cryptic sites. Therefore, we introduce an advanced method, CrypToth, for the precise identification of cryptic sites utilizing the topological data analysis such as persistent homology method. This method integrates topological data analysis and mixed-solvent molecular dynamics (MSMD) simulations. To identify hotspots corresponding to cryptic sites, we conducted MSMD simulations using six probes with different chemical properties: dimethyl ether, benzene, phenol, methyl imidazole, acetonitrile, and ethylene glycol. Subsequently, we applied our topological data analysis method to rank hotspots based on the possibility of harboring cryptic sites. Evaluation of CrypToth using nine target proteins containing well-defined cryptic sites revealed its superior performance compared with recent machine-learning methods. As a result, in seven of nine cases, hotspots associated with cryptic sites were ranked the highest. CrypToth can explore hotspots on the protein surface favorable to ligand binding using MSMD simulations with six different probes and then identify hotspots corresponding to cryptic sites by assessing the protein’s conformational variability using the topological data analysis. This synergistic approach facilitates the prediction of cryptic sites with a high accuracy.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"65 11\",\"pages\":\"5567–5575 5567–5575\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jcim.4c02111\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c02111\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c02111","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
CrypToth: Cryptic Pocket Detection through Mixed-Solvent Molecular Dynamics Simulations-Based Topological Data Analysis
Some functional proteins undergo conformational changes to expose hidden binding sites when a binding molecule approaches their surface. Such binding sites are called cryptic sites and are important targets for drug discovery. However, it is still difficult to correctly predict cryptic sites. Therefore, we introduce an advanced method, CrypToth, for the precise identification of cryptic sites utilizing the topological data analysis such as persistent homology method. This method integrates topological data analysis and mixed-solvent molecular dynamics (MSMD) simulations. To identify hotspots corresponding to cryptic sites, we conducted MSMD simulations using six probes with different chemical properties: dimethyl ether, benzene, phenol, methyl imidazole, acetonitrile, and ethylene glycol. Subsequently, we applied our topological data analysis method to rank hotspots based on the possibility of harboring cryptic sites. Evaluation of CrypToth using nine target proteins containing well-defined cryptic sites revealed its superior performance compared with recent machine-learning methods. As a result, in seven of nine cases, hotspots associated with cryptic sites were ranked the highest. CrypToth can explore hotspots on the protein surface favorable to ligand binding using MSMD simulations with six different probes and then identify hotspots corresponding to cryptic sites by assessing the protein’s conformational variability using the topological data analysis. This synergistic approach facilitates the prediction of cryptic sites with a high accuracy.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.