Changde Du, Kaicheng Fu, Bincheng Wen, Yi Sun, Jie Peng, Wei Wei, Ying Gao, Shengpei Wang, Chuncheng Zhang, Jinpeng Li, Shuang Qiu, Le Chang, Huiguang He
{"title":"类人对象概念表示在多模态大型语言模型中自然出现","authors":"Changde Du, Kaicheng Fu, Bincheng Wen, Yi Sun, Jie Peng, Wei Wei, Ying Gao, Shengpei Wang, Chuncheng Zhang, Jinpeng Li, Shuang Qiu, Le Chang, Huiguang He","doi":"10.1038/s42256-025-01049-z","DOIUrl":null,"url":null,"abstract":"<p>Understanding how humans conceptualize and categorize natural objects offers critical insights into perception and cognition. With the advent of large language models (LLMs), a key question arises: can these models develop human-like object representations from linguistic and multimodal data? Here we combined behavioural and neuroimaging analyses to explore the relationship between object concept representations in LLMs and human cognition. We collected 4.7 million triplet judgements from LLMs and multimodal LLMs to derive low-dimensional embeddings that capture the similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were stable, predictive and exhibited semantic clustering similar to human mental representations. Remarkably, the dimensions underlying these embeddings were interpretable, suggesting that LLMs and multimodal LLMs develop human-like conceptual representations of objects. Further analysis showed strong alignment between model embeddings and neural activity patterns in brain regions such as the extrastriate body area, parahippocampal place area, retrosplenial cortex and fusiform face area. This provides compelling evidence that the object representations in LLMs, although not identical to human ones, share fundamental similarities that reflect key aspects of human conceptual knowledge. Our findings advance the understanding of machine intelligence and inform the development of more human-like artificial cognitive systems.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"40 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-like object concept representations emerge naturally in multimodal large language models\",\"authors\":\"Changde Du, Kaicheng Fu, Bincheng Wen, Yi Sun, Jie Peng, Wei Wei, Ying Gao, Shengpei Wang, Chuncheng Zhang, Jinpeng Li, Shuang Qiu, Le Chang, Huiguang He\",\"doi\":\"10.1038/s42256-025-01049-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding how humans conceptualize and categorize natural objects offers critical insights into perception and cognition. With the advent of large language models (LLMs), a key question arises: can these models develop human-like object representations from linguistic and multimodal data? Here we combined behavioural and neuroimaging analyses to explore the relationship between object concept representations in LLMs and human cognition. We collected 4.7 million triplet judgements from LLMs and multimodal LLMs to derive low-dimensional embeddings that capture the similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were stable, predictive and exhibited semantic clustering similar to human mental representations. Remarkably, the dimensions underlying these embeddings were interpretable, suggesting that LLMs and multimodal LLMs develop human-like conceptual representations of objects. Further analysis showed strong alignment between model embeddings and neural activity patterns in brain regions such as the extrastriate body area, parahippocampal place area, retrosplenial cortex and fusiform face area. This provides compelling evidence that the object representations in LLMs, although not identical to human ones, share fundamental similarities that reflect key aspects of human conceptual knowledge. Our findings advance the understanding of machine intelligence and inform the development of more human-like artificial cognitive systems.</p>\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1038/s42256-025-01049-z\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-025-01049-z","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Human-like object concept representations emerge naturally in multimodal large language models
Understanding how humans conceptualize and categorize natural objects offers critical insights into perception and cognition. With the advent of large language models (LLMs), a key question arises: can these models develop human-like object representations from linguistic and multimodal data? Here we combined behavioural and neuroimaging analyses to explore the relationship between object concept representations in LLMs and human cognition. We collected 4.7 million triplet judgements from LLMs and multimodal LLMs to derive low-dimensional embeddings that capture the similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were stable, predictive and exhibited semantic clustering similar to human mental representations. Remarkably, the dimensions underlying these embeddings were interpretable, suggesting that LLMs and multimodal LLMs develop human-like conceptual representations of objects. Further analysis showed strong alignment between model embeddings and neural activity patterns in brain regions such as the extrastriate body area, parahippocampal place area, retrosplenial cortex and fusiform face area. This provides compelling evidence that the object representations in LLMs, although not identical to human ones, share fundamental similarities that reflect key aspects of human conceptual knowledge. Our findings advance the understanding of machine intelligence and inform the development of more human-like artificial cognitive systems.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.