{"title":"基于三氮卓昔烯空穴传输层的Sb2(S,Se)3太阳能电池模型研究","authors":"Valentina Sneha George, Aruna‐Devi Rasu Chettiar, Saravanan Rajendran, Hichem Bencherif, P. Sasikumar, Latha Marasamy","doi":"10.1002/adts.202500487","DOIUrl":null,"url":null,"abstract":"Sb<jats:sub>2</jats:sub>(S,Se)<jats:sub>3</jats:sub> is a promising thin‐film solar absorber with a tunable bandgap (1.3–1.7 eV) and earth‐abundant composition, yet its maximum reported efficiency (10.75%) in FTO/CdS/Sb<jats:sub>2</jats:sub>(S,Se)<jats:sub>3</jats:sub>/Spiro‐OMeTAD/Au remains below the Shockley‐Queisser limit. Moreover, the high cost of Spiro‐OMeTAD as an HTL limits commercialization. Herein cost‐effective triazatruxene‐based HTLs (CI‐B2, CI‐B3, TAT‐H, TAT‐TY1, TAT‐TY2) are introduced for the first time in Sb<jats:sub>2</jats:sub>(S,Se)<jats:sub>3</jats:sub> solar cells and optimize device performance using SCAPS‐1D. After replicating the experimental efficiency, optimization of HTL, ETL, and absorber parameters results in V<jats:sub>OC</jats:sub> (≈1 V), J<jats:sub>SC</jats:sub> >30 mA cm<jats:sup>−2</jats:sup>), and FF (72–74%). Overall, efficiencies of 22.97%, 23.09%, 22.47%, 21.08%, 23.24%, and 23.11% are achieved for Spiro‐OMeTAD, CI‐B2, CI‐B3, TAT‐H, TAT‐TY1, and TAT‐TY2, respectively, owing to the reduced V<jats:sub>OC</jats:sub> loss (≈0.4 V), enhanced QE (>70%), reduced recombination (by a factor of 3 × 10<jats:sup>18</jats:sup> cm<jats:sup>−3</jats:sup>s<jats:sup>−1</jats:sup>), and stronger electric fields, positioning triazatruxene‐based HTLs as a cost‐effective alternative to Spiro‐OMeTAD, significantly boosting Sb<jats:sub>2</jats:sub>(S,Se)<jats:sub>3</jats:sub> solar cell performance.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"62 1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling Insights of Sb2(S,Se)3 Solar Cells Using Triazatruxene Hole Transport Layers\",\"authors\":\"Valentina Sneha George, Aruna‐Devi Rasu Chettiar, Saravanan Rajendran, Hichem Bencherif, P. Sasikumar, Latha Marasamy\",\"doi\":\"10.1002/adts.202500487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sb<jats:sub>2</jats:sub>(S,Se)<jats:sub>3</jats:sub> is a promising thin‐film solar absorber with a tunable bandgap (1.3–1.7 eV) and earth‐abundant composition, yet its maximum reported efficiency (10.75%) in FTO/CdS/Sb<jats:sub>2</jats:sub>(S,Se)<jats:sub>3</jats:sub>/Spiro‐OMeTAD/Au remains below the Shockley‐Queisser limit. Moreover, the high cost of Spiro‐OMeTAD as an HTL limits commercialization. Herein cost‐effective triazatruxene‐based HTLs (CI‐B2, CI‐B3, TAT‐H, TAT‐TY1, TAT‐TY2) are introduced for the first time in Sb<jats:sub>2</jats:sub>(S,Se)<jats:sub>3</jats:sub> solar cells and optimize device performance using SCAPS‐1D. After replicating the experimental efficiency, optimization of HTL, ETL, and absorber parameters results in V<jats:sub>OC</jats:sub> (≈1 V), J<jats:sub>SC</jats:sub> >30 mA cm<jats:sup>−2</jats:sup>), and FF (72–74%). Overall, efficiencies of 22.97%, 23.09%, 22.47%, 21.08%, 23.24%, and 23.11% are achieved for Spiro‐OMeTAD, CI‐B2, CI‐B3, TAT‐H, TAT‐TY1, and TAT‐TY2, respectively, owing to the reduced V<jats:sub>OC</jats:sub> loss (≈0.4 V), enhanced QE (>70%), reduced recombination (by a factor of 3 × 10<jats:sup>18</jats:sup> cm<jats:sup>−3</jats:sup>s<jats:sup>−1</jats:sup>), and stronger electric fields, positioning triazatruxene‐based HTLs as a cost‐effective alternative to Spiro‐OMeTAD, significantly boosting Sb<jats:sub>2</jats:sub>(S,Se)<jats:sub>3</jats:sub> solar cell performance.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"62 1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202500487\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500487","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Modelling Insights of Sb2(S,Se)3 Solar Cells Using Triazatruxene Hole Transport Layers
Sb2(S,Se)3 is a promising thin‐film solar absorber with a tunable bandgap (1.3–1.7 eV) and earth‐abundant composition, yet its maximum reported efficiency (10.75%) in FTO/CdS/Sb2(S,Se)3/Spiro‐OMeTAD/Au remains below the Shockley‐Queisser limit. Moreover, the high cost of Spiro‐OMeTAD as an HTL limits commercialization. Herein cost‐effective triazatruxene‐based HTLs (CI‐B2, CI‐B3, TAT‐H, TAT‐TY1, TAT‐TY2) are introduced for the first time in Sb2(S,Se)3 solar cells and optimize device performance using SCAPS‐1D. After replicating the experimental efficiency, optimization of HTL, ETL, and absorber parameters results in VOC (≈1 V), JSC >30 mA cm−2), and FF (72–74%). Overall, efficiencies of 22.97%, 23.09%, 22.47%, 21.08%, 23.24%, and 23.11% are achieved for Spiro‐OMeTAD, CI‐B2, CI‐B3, TAT‐H, TAT‐TY1, and TAT‐TY2, respectively, owing to the reduced VOC loss (≈0.4 V), enhanced QE (>70%), reduced recombination (by a factor of 3 × 1018 cm−3s−1), and stronger electric fields, positioning triazatruxene‐based HTLs as a cost‐effective alternative to Spiro‐OMeTAD, significantly boosting Sb2(S,Se)3 solar cell performance.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics