La对马氏体时效钢中B2-NiAl纳米颗粒聚类过程的影响:原子尺度表征和基于深度学习势的分子动力学模拟

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Haiyan Wang , Xueyun Gao , Gang Sha , Lei Xing , Wenbo Fan , Huijie Tan
{"title":"La对马氏体时效钢中B2-NiAl纳米颗粒聚类过程的影响:原子尺度表征和基于深度学习势的分子动力学模拟","authors":"Haiyan Wang ,&nbsp;Xueyun Gao ,&nbsp;Gang Sha ,&nbsp;Lei Xing ,&nbsp;Wenbo Fan ,&nbsp;Huijie Tan","doi":"10.1016/j.actamat.2025.121234","DOIUrl":null,"url":null,"abstract":"<div><div>Maraging steels strengthened by coherent B2-NiAl precipitates exhibit an exceptional combination of strength and toughness, and trace amounts of rare earth (RE) elements can further enhance their mechanical performance through molten steel purification and microstructure tuning, yet the atomic-scale mechanisms governing RE effects on the NiAl precipitation remain unclear. Here, we unveil how La accelerates NiAl clustering and ordering in Fe-Ni-Al system through a synergistic combination of atomic-scale characterization, and a novel deep learning potential enabling multi-component atomic simulations. Atom probe tomography (APT) and high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) reveal La enhances NiAl cluster density and growth kinetics, yielding earlier peak hardness during aging. Molecular dynamics simulations demonstrate La increases thermodynamic driving forces for precipitation and promotes Ni-Al pair ordering through strong Ni-La atomic interactions, as validated by first-principles binding energy calculations. This work establishes a paradigm integrating machine-learning enhanced atomistic simulations with advanced characterization to decode RE effects in complex alloys, and offers transformative strategies for high-performance alloy development targeting extreme service environments.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"296 ","pages":"Article 121234"},"PeriodicalIF":8.3000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of La on the clustering process of B2-NiAl nanoparticles in maraging steels: Atomic-scale characterization and molecular dynamics simulation using deep learning potential\",\"authors\":\"Haiyan Wang ,&nbsp;Xueyun Gao ,&nbsp;Gang Sha ,&nbsp;Lei Xing ,&nbsp;Wenbo Fan ,&nbsp;Huijie Tan\",\"doi\":\"10.1016/j.actamat.2025.121234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Maraging steels strengthened by coherent B2-NiAl precipitates exhibit an exceptional combination of strength and toughness, and trace amounts of rare earth (RE) elements can further enhance their mechanical performance through molten steel purification and microstructure tuning, yet the atomic-scale mechanisms governing RE effects on the NiAl precipitation remain unclear. Here, we unveil how La accelerates NiAl clustering and ordering in Fe-Ni-Al system through a synergistic combination of atomic-scale characterization, and a novel deep learning potential enabling multi-component atomic simulations. Atom probe tomography (APT) and high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) reveal La enhances NiAl cluster density and growth kinetics, yielding earlier peak hardness during aging. Molecular dynamics simulations demonstrate La increases thermodynamic driving forces for precipitation and promotes Ni-Al pair ordering through strong Ni-La atomic interactions, as validated by first-principles binding energy calculations. This work establishes a paradigm integrating machine-learning enhanced atomistic simulations with advanced characterization to decode RE effects in complex alloys, and offers transformative strategies for high-performance alloy development targeting extreme service environments.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"296 \",\"pages\":\"Article 121234\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135964542500521X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135964542500521X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

经B2-NiAl相强化的马氏体时效钢表现出优异的强度和韧性组合,微量稀土(RE)元素可以通过钢液净化和微观结构调整进一步提高其力学性能,但稀土对NiAl析出影响的原子尺度机制尚不清楚。在这里,我们揭示了La如何通过原子尺度表征的协同组合加速Fe-Ni-Al系统中的NiAl聚类和有序,以及一种新的深度学习潜力,可以实现多组分原子模拟。原子探针断层扫描(APT)和高角度环形暗场扫描透射电子显微镜(HAADF-STEM)显示,La增强了NiAl簇密度和生长动力学,在时效过程中产生更早的峰值硬度。分子动力学模拟表明,La增加了沉淀的热力学驱动力,并通过强Ni-La原子相互作用促进了Ni-Al对的排序,这一点得到了第一性原理结合能计算的验证。这项工作建立了一个范例,将机器学习增强的原子模拟与高级表征相结合,以解码复杂合金中的RE效应,并为针对极端服务环境的高性能合金开发提供了变革性策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effects of La on the clustering process of B2-NiAl nanoparticles in maraging steels: Atomic-scale characterization and molecular dynamics simulation using deep learning potential

Effects of La on the clustering process of B2-NiAl nanoparticles in maraging steels: Atomic-scale characterization and molecular dynamics simulation using deep learning potential
Maraging steels strengthened by coherent B2-NiAl precipitates exhibit an exceptional combination of strength and toughness, and trace amounts of rare earth (RE) elements can further enhance their mechanical performance through molten steel purification and microstructure tuning, yet the atomic-scale mechanisms governing RE effects on the NiAl precipitation remain unclear. Here, we unveil how La accelerates NiAl clustering and ordering in Fe-Ni-Al system through a synergistic combination of atomic-scale characterization, and a novel deep learning potential enabling multi-component atomic simulations. Atom probe tomography (APT) and high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) reveal La enhances NiAl cluster density and growth kinetics, yielding earlier peak hardness during aging. Molecular dynamics simulations demonstrate La increases thermodynamic driving forces for precipitation and promotes Ni-Al pair ordering through strong Ni-La atomic interactions, as validated by first-principles binding energy calculations. This work establishes a paradigm integrating machine-learning enhanced atomistic simulations with advanced characterization to decode RE effects in complex alloys, and offers transformative strategies for high-performance alloy development targeting extreme service environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信