具有效率的通用图像分割

IF 18.6
Jie Hu;Liujuan Cao;Xiaofeng Jin;Shengchuan Zhang;Rongrong Ji
{"title":"具有效率的通用图像分割","authors":"Jie Hu;Liujuan Cao;Xiaofeng Jin;Shengchuan Zhang;Rongrong Ji","doi":"10.1109/TPAMI.2025.3576857","DOIUrl":null,"url":null,"abstract":"In this paper, we present UISE, a unified image segmentation framework that achieves efficient performance across various segmentation tasks, eliminating the need for multiple specialized pipelines. UISE employs dynamic convolutions between universal segmentation kernels and image feature maps, enabling a single pipeline for different tasks such as panoptic, instance, semantic, and video instance segmentation. To address computational requirements, we introduce a feature pyramid aggregator for image feature extraction and a separable dynamic decoder for generating segmentation kernels. The aggregator re-parameterizes interpolation-first modules in a convolution-first manner, resulting in a significant acceleration of the pipeline without incurring additional costs. The decoder incorporates multi-head cross-attention through separable dynamic convolution, enhancing both efficiency and accuracy. Extensive experiments are conducted to validate UISE’s performance across different segmentation tasks. To the best of our knowledge, UISE is the first universal segmentation framework that delivers competitive performance in terms of both speed and accuracy when compared to current state-of-the-art models.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 10","pages":"8550-8562"},"PeriodicalIF":18.6000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal Image Segmentation With Efficiency\",\"authors\":\"Jie Hu;Liujuan Cao;Xiaofeng Jin;Shengchuan Zhang;Rongrong Ji\",\"doi\":\"10.1109/TPAMI.2025.3576857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present UISE, a unified image segmentation framework that achieves efficient performance across various segmentation tasks, eliminating the need for multiple specialized pipelines. UISE employs dynamic convolutions between universal segmentation kernels and image feature maps, enabling a single pipeline for different tasks such as panoptic, instance, semantic, and video instance segmentation. To address computational requirements, we introduce a feature pyramid aggregator for image feature extraction and a separable dynamic decoder for generating segmentation kernels. The aggregator re-parameterizes interpolation-first modules in a convolution-first manner, resulting in a significant acceleration of the pipeline without incurring additional costs. The decoder incorporates multi-head cross-attention through separable dynamic convolution, enhancing both efficiency and accuracy. Extensive experiments are conducted to validate UISE’s performance across different segmentation tasks. To the best of our knowledge, UISE is the first universal segmentation framework that delivers competitive performance in terms of both speed and accuracy when compared to current state-of-the-art models.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 10\",\"pages\":\"8550-8562\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11027444/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11027444/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了UISE,一个统一的图像分割框架,在各种分割任务中实现高效的性能,消除了对多个专门管道的需要。UISE在通用分割内核和图像特征映射之间使用动态卷积,为不同的任务(如全景分割、实例分割、语义分割和视频实例分割)提供了一个单一的管道。为了满足计算需求,我们引入了用于图像特征提取的特征金字塔聚合器和用于生成分割核的可分离动态解码器。聚合器以卷积优先的方式重新参数化插值优先模块,从而在不产生额外成本的情况下显著加速管道。该解码器通过可分动态卷积实现多头交叉注意,提高了解码器的效率和精度。进行了大量的实验来验证UISE在不同分割任务中的性能。据我们所知,与目前最先进的模型相比,UISE是第一个在速度和准确性方面都具有竞争力的通用分割框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal Image Segmentation With Efficiency
In this paper, we present UISE, a unified image segmentation framework that achieves efficient performance across various segmentation tasks, eliminating the need for multiple specialized pipelines. UISE employs dynamic convolutions between universal segmentation kernels and image feature maps, enabling a single pipeline for different tasks such as panoptic, instance, semantic, and video instance segmentation. To address computational requirements, we introduce a feature pyramid aggregator for image feature extraction and a separable dynamic decoder for generating segmentation kernels. The aggregator re-parameterizes interpolation-first modules in a convolution-first manner, resulting in a significant acceleration of the pipeline without incurring additional costs. The decoder incorporates multi-head cross-attention through separable dynamic convolution, enhancing both efficiency and accuracy. Extensive experiments are conducted to validate UISE’s performance across different segmentation tasks. To the best of our knowledge, UISE is the first universal segmentation framework that delivers competitive performance in terms of both speed and accuracy when compared to current state-of-the-art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信