GalSBI:基于模拟推理的宇宙学现象学星系群模型

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Silvan Fischbacher, Tomasz Kacprzak, Luca Tortorelli, Beatrice Moser, Alexandre Refregier, Patrick Gebhardt and Daniel Gruen
{"title":"GalSBI:基于模拟推理的宇宙学现象学星系群模型","authors":"Silvan Fischbacher, Tomasz Kacprzak, Luca Tortorelli, Beatrice Moser, Alexandre Refregier, Patrick Gebhardt and Daniel Gruen","doi":"10.1088/1475-7516/2025/06/007","DOIUrl":null,"url":null,"abstract":"We present GalSBI, a phenomenological model of the galaxy population for cosmological applications using simulation-based inference. The model is based on analytical parametrizations of galaxy luminosity functions, morphologies and spectral energy distributions. Model constraints are derived through iterative Approximate Bayesian Computation, by comparing Hyper Suprime-Cam deep field images with simulations which include a forward model of instrumental, observational and source extraction effects. We developed an emulator trained on image simulations using a normalizing flow. We use it to accelerate the inference by predicting detection probabilities, including blending effects and photometric properties of each object, while accounting for background and PSF variations. This enables robustness tests for all elements of the forward model and the inference. The model demonstrates excellent performance when comparing photometric properties from simulations with observed imaging data for key parameters such as magnitudes, colors and sizes. The redshift distribution of simulated galaxies agrees well with high-precision photometric redshifts in the COSMOS field within 1.5σ for all magnitude cuts. Additionally, we demonstrate how GalSBI's redshifts can be utilized for splitting galaxy catalogs into tomographic bins, highlighting its potential for current and upcoming surveys. GalSBI is fully open-source, with the accompanying Python package, galsbi (https://cosmo-docs.phys.ethz.ch/galsbi/), offering an easy interface to quickly generate realistic, survey-independent galaxy catalogs.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"2 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GalSBI: phenomenological galaxy population model for cosmology using simulation-based inference\",\"authors\":\"Silvan Fischbacher, Tomasz Kacprzak, Luca Tortorelli, Beatrice Moser, Alexandre Refregier, Patrick Gebhardt and Daniel Gruen\",\"doi\":\"10.1088/1475-7516/2025/06/007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present GalSBI, a phenomenological model of the galaxy population for cosmological applications using simulation-based inference. The model is based on analytical parametrizations of galaxy luminosity functions, morphologies and spectral energy distributions. Model constraints are derived through iterative Approximate Bayesian Computation, by comparing Hyper Suprime-Cam deep field images with simulations which include a forward model of instrumental, observational and source extraction effects. We developed an emulator trained on image simulations using a normalizing flow. We use it to accelerate the inference by predicting detection probabilities, including blending effects and photometric properties of each object, while accounting for background and PSF variations. This enables robustness tests for all elements of the forward model and the inference. The model demonstrates excellent performance when comparing photometric properties from simulations with observed imaging data for key parameters such as magnitudes, colors and sizes. The redshift distribution of simulated galaxies agrees well with high-precision photometric redshifts in the COSMOS field within 1.5σ for all magnitude cuts. Additionally, we demonstrate how GalSBI's redshifts can be utilized for splitting galaxy catalogs into tomographic bins, highlighting its potential for current and upcoming surveys. GalSBI is fully open-source, with the accompanying Python package, galsbi (https://cosmo-docs.phys.ethz.ch/galsbi/), offering an easy interface to quickly generate realistic, survey-independent galaxy catalogs.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/06/007\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/06/007","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了GalSBI,一个用于宇宙学应用的星系种群的现象学模型,使用基于模拟的推理。该模型基于星系光度函数、形态和光谱能量分布的解析参数化。通过比较Hyper prime- cam深场图像与模拟(包括仪器、观测和源提取效应的正演模型),通过迭代近似贝叶斯计算推导出模型约束。我们开发了一个使用归一化流进行图像模拟训练的模拟器。我们使用它来加速推理,通过预测检测概率,包括混合效果和每个对象的光度特性,同时考虑背景和PSF的变化。这样就可以对前向模型和推理的所有元素进行鲁棒性测试。将模拟所得的光度特性与观测到的成像数据(如星等、颜色和尺寸等关键参数)进行比较,该模型表现出优异的性能。模拟星系的红移分布与COSMOS场在1.5σ范围内的高精度光度红移吻合良好。此外,我们还展示了如何利用GalSBI的红移将星系目录划分为层析箱,突出了它在当前和即将进行的调查中的潜力。GalSBI是完全开源的,附带的Python包GalSBI (https://cosmo-docs.phys.ethz.ch/galsbi/)提供了一个简单的界面,可以快速生成真实的、独立于调查的星系目录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GalSBI: phenomenological galaxy population model for cosmology using simulation-based inference
We present GalSBI, a phenomenological model of the galaxy population for cosmological applications using simulation-based inference. The model is based on analytical parametrizations of galaxy luminosity functions, morphologies and spectral energy distributions. Model constraints are derived through iterative Approximate Bayesian Computation, by comparing Hyper Suprime-Cam deep field images with simulations which include a forward model of instrumental, observational and source extraction effects. We developed an emulator trained on image simulations using a normalizing flow. We use it to accelerate the inference by predicting detection probabilities, including blending effects and photometric properties of each object, while accounting for background and PSF variations. This enables robustness tests for all elements of the forward model and the inference. The model demonstrates excellent performance when comparing photometric properties from simulations with observed imaging data for key parameters such as magnitudes, colors and sizes. The redshift distribution of simulated galaxies agrees well with high-precision photometric redshifts in the COSMOS field within 1.5σ for all magnitude cuts. Additionally, we demonstrate how GalSBI's redshifts can be utilized for splitting galaxy catalogs into tomographic bins, highlighting its potential for current and upcoming surveys. GalSBI is fully open-source, with the accompanying Python package, galsbi (https://cosmo-docs.phys.ethz.ch/galsbi/), offering an easy interface to quickly generate realistic, survey-independent galaxy catalogs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信