液晶中的涌现二聚体模型拓扑秩序和准粒子激发:组合涡旋晶格

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Cuiling Meng, Jin-Sheng Wu, Žiga Kos, Jörn Dunkel, Cristiano Nisoli, Ivan I. Smalyukh
{"title":"液晶中的涌现二聚体模型拓扑秩序和准粒子激发:组合涡旋晶格","authors":"Cuiling Meng, Jin-Sheng Wu, Žiga Kos, Jörn Dunkel, Cristiano Nisoli, Ivan I. Smalyukh","doi":"10.1103/physrevx.15.021084","DOIUrl":null,"url":null,"abstract":"Liquid crystals have proven to provide a versatile experimental and theoretical platform for studying topological objects such as vortices, skyrmions, and hopfions. In parallel, in hard condensed matter physics, the concept of topological phases and topological order has been introduced in the context of spin liquids to investigate emergent phenomena like quantum Hall effects and high-temperature superconductivity. Here, we bridge these two seemingly disparate perspectives on topology in physics. Combining experiments and simulations, we show how topological defects in liquid crystals can be used as versatile building blocks to create complex, highly degenerate topological phases, which we refer to as “combinatorial vortex lattices” (CVLs). CVLs exhibit extensive residual entropy and support locally stable quasiparticle excitations in the form of charge-conserving topological monopoles, which can act as mobile information carriers and be linked via Dirac strings. CVLs can be rewritten and reconfigured on demand, endowed with various symmetries, and modified through laser-induced topological surgery—an essential capability for information storage and retrieval. We demonstrate experimentally the realization, stability, and precise optical manipulation of CVLs, thus opening new avenues for understanding and technologically exploiting higher-hierarchy topology in liquid crystals and other ordered media. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"36 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergent Dimer-Model Topological Order and Quasiparticle Excitations in Liquid Crystals: Combinatorial Vortex Lattices\",\"authors\":\"Cuiling Meng, Jin-Sheng Wu, Žiga Kos, Jörn Dunkel, Cristiano Nisoli, Ivan I. Smalyukh\",\"doi\":\"10.1103/physrevx.15.021084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid crystals have proven to provide a versatile experimental and theoretical platform for studying topological objects such as vortices, skyrmions, and hopfions. In parallel, in hard condensed matter physics, the concept of topological phases and topological order has been introduced in the context of spin liquids to investigate emergent phenomena like quantum Hall effects and high-temperature superconductivity. Here, we bridge these two seemingly disparate perspectives on topology in physics. Combining experiments and simulations, we show how topological defects in liquid crystals can be used as versatile building blocks to create complex, highly degenerate topological phases, which we refer to as “combinatorial vortex lattices” (CVLs). CVLs exhibit extensive residual entropy and support locally stable quasiparticle excitations in the form of charge-conserving topological monopoles, which can act as mobile information carriers and be linked via Dirac strings. CVLs can be rewritten and reconfigured on demand, endowed with various symmetries, and modified through laser-induced topological surgery—an essential capability for information storage and retrieval. We demonstrate experimentally the realization, stability, and precise optical manipulation of CVLs, thus opening new avenues for understanding and technologically exploiting higher-hierarchy topology in liquid crystals and other ordered media. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021084\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021084","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

液晶已被证明为研究拓扑对象(如漩涡、天空边缘和跳跃)提供了一个通用的实验和理论平台。同时,在硬凝聚态物理中,拓扑相和拓扑序的概念也被引入到自旋液体中,用于研究量子霍尔效应和高温超导等涌现现象。在这里,我们将这两种看似不同的物理学拓扑学观点联系起来。结合实验和模拟,我们展示了如何将液晶中的拓扑缺陷用作多功能构建块来创建复杂的,高度退化的拓扑相,我们称之为“组合涡晶格”(CVLs)。cvl具有广泛的剩余熵,支持电荷守恒拓扑单极子形式的局部稳定准粒子激发,可以作为移动信息载体并通过狄拉克弦连接。cvl可以根据需要重写和重新配置,赋予各种对称性,并通过激光诱导拓扑手术进行修改,这是信息存储和检索的基本能力。我们通过实验证明了cvl的实现、稳定性和精确的光学操作,从而为理解和技术开发液晶和其他有序介质中的更高层次拓扑开辟了新的途径。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergent Dimer-Model Topological Order and Quasiparticle Excitations in Liquid Crystals: Combinatorial Vortex Lattices
Liquid crystals have proven to provide a versatile experimental and theoretical platform for studying topological objects such as vortices, skyrmions, and hopfions. In parallel, in hard condensed matter physics, the concept of topological phases and topological order has been introduced in the context of spin liquids to investigate emergent phenomena like quantum Hall effects and high-temperature superconductivity. Here, we bridge these two seemingly disparate perspectives on topology in physics. Combining experiments and simulations, we show how topological defects in liquid crystals can be used as versatile building blocks to create complex, highly degenerate topological phases, which we refer to as “combinatorial vortex lattices” (CVLs). CVLs exhibit extensive residual entropy and support locally stable quasiparticle excitations in the form of charge-conserving topological monopoles, which can act as mobile information carriers and be linked via Dirac strings. CVLs can be rewritten and reconfigured on demand, endowed with various symmetries, and modified through laser-induced topological surgery—an essential capability for information storage and retrieval. We demonstrate experimentally the realization, stability, and precise optical manipulation of CVLs, thus opening new avenues for understanding and technologically exploiting higher-hierarchy topology in liquid crystals and other ordered media. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信