Cuiling Meng, Jin-Sheng Wu, Žiga Kos, Jörn Dunkel, Cristiano Nisoli, Ivan I. Smalyukh
{"title":"液晶中的涌现二聚体模型拓扑秩序和准粒子激发:组合涡旋晶格","authors":"Cuiling Meng, Jin-Sheng Wu, Žiga Kos, Jörn Dunkel, Cristiano Nisoli, Ivan I. Smalyukh","doi":"10.1103/physrevx.15.021084","DOIUrl":null,"url":null,"abstract":"Liquid crystals have proven to provide a versatile experimental and theoretical platform for studying topological objects such as vortices, skyrmions, and hopfions. In parallel, in hard condensed matter physics, the concept of topological phases and topological order has been introduced in the context of spin liquids to investigate emergent phenomena like quantum Hall effects and high-temperature superconductivity. Here, we bridge these two seemingly disparate perspectives on topology in physics. Combining experiments and simulations, we show how topological defects in liquid crystals can be used as versatile building blocks to create complex, highly degenerate topological phases, which we refer to as “combinatorial vortex lattices” (CVLs). CVLs exhibit extensive residual entropy and support locally stable quasiparticle excitations in the form of charge-conserving topological monopoles, which can act as mobile information carriers and be linked via Dirac strings. CVLs can be rewritten and reconfigured on demand, endowed with various symmetries, and modified through laser-induced topological surgery—an essential capability for information storage and retrieval. We demonstrate experimentally the realization, stability, and precise optical manipulation of CVLs, thus opening new avenues for understanding and technologically exploiting higher-hierarchy topology in liquid crystals and other ordered media. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"36 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergent Dimer-Model Topological Order and Quasiparticle Excitations in Liquid Crystals: Combinatorial Vortex Lattices\",\"authors\":\"Cuiling Meng, Jin-Sheng Wu, Žiga Kos, Jörn Dunkel, Cristiano Nisoli, Ivan I. Smalyukh\",\"doi\":\"10.1103/physrevx.15.021084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid crystals have proven to provide a versatile experimental and theoretical platform for studying topological objects such as vortices, skyrmions, and hopfions. In parallel, in hard condensed matter physics, the concept of topological phases and topological order has been introduced in the context of spin liquids to investigate emergent phenomena like quantum Hall effects and high-temperature superconductivity. Here, we bridge these two seemingly disparate perspectives on topology in physics. Combining experiments and simulations, we show how topological defects in liquid crystals can be used as versatile building blocks to create complex, highly degenerate topological phases, which we refer to as “combinatorial vortex lattices” (CVLs). CVLs exhibit extensive residual entropy and support locally stable quasiparticle excitations in the form of charge-conserving topological monopoles, which can act as mobile information carriers and be linked via Dirac strings. CVLs can be rewritten and reconfigured on demand, endowed with various symmetries, and modified through laser-induced topological surgery—an essential capability for information storage and retrieval. We demonstrate experimentally the realization, stability, and precise optical manipulation of CVLs, thus opening new avenues for understanding and technologically exploiting higher-hierarchy topology in liquid crystals and other ordered media. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021084\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021084","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Emergent Dimer-Model Topological Order and Quasiparticle Excitations in Liquid Crystals: Combinatorial Vortex Lattices
Liquid crystals have proven to provide a versatile experimental and theoretical platform for studying topological objects such as vortices, skyrmions, and hopfions. In parallel, in hard condensed matter physics, the concept of topological phases and topological order has been introduced in the context of spin liquids to investigate emergent phenomena like quantum Hall effects and high-temperature superconductivity. Here, we bridge these two seemingly disparate perspectives on topology in physics. Combining experiments and simulations, we show how topological defects in liquid crystals can be used as versatile building blocks to create complex, highly degenerate topological phases, which we refer to as “combinatorial vortex lattices” (CVLs). CVLs exhibit extensive residual entropy and support locally stable quasiparticle excitations in the form of charge-conserving topological monopoles, which can act as mobile information carriers and be linked via Dirac strings. CVLs can be rewritten and reconfigured on demand, endowed with various symmetries, and modified through laser-induced topological surgery—an essential capability for information storage and retrieval. We demonstrate experimentally the realization, stability, and precise optical manipulation of CVLs, thus opening new avenues for understanding and technologically exploiting higher-hierarchy topology in liquid crystals and other ordered media. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.