{"title":"超声测量健康人舌的相对大小及其与舌活动的关系。","authors":"Jing Sun, Tatsuya Kitamura, Yukiko Nota, Noriko Yamane, Ryoko Hayashi","doi":"10.1121/10.0036838","DOIUrl":null,"url":null,"abstract":"<p><p>The size of an individual's tongue relative to the oral cavity is associated with articulation speed [Feng, Lu, Zheng, Chi, and Honda, in Proceedings of the 10th Biennial Asia Pacific Conference on Speech, Language, and Hearing (2017), pp. 17-19)] and may affect speech clarity. This study introduces an ultrasound-based method for measuring relative tongue size, termed ultrasound-based relative tongue size (uRTS), as a cost-effective alternative to the magnetic resonance imaging (MRI) based method. Using deep learning to extract the tongue contour, uRTS was calculated from tongue and oropharyngeal cavity sizes in the midsagittal plane. Results from ten speakers showed a strong correlation between uRTS and MRI-based measurements (r = 0.87) and a negative correlation with tongue movement speed (r = -0.73), indicating uRTS is a useful index for assessing tongue size.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"5 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound measurement of relative tongue size and its correlation with tongue mobility for healthy individuals.\",\"authors\":\"Jing Sun, Tatsuya Kitamura, Yukiko Nota, Noriko Yamane, Ryoko Hayashi\",\"doi\":\"10.1121/10.0036838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The size of an individual's tongue relative to the oral cavity is associated with articulation speed [Feng, Lu, Zheng, Chi, and Honda, in Proceedings of the 10th Biennial Asia Pacific Conference on Speech, Language, and Hearing (2017), pp. 17-19)] and may affect speech clarity. This study introduces an ultrasound-based method for measuring relative tongue size, termed ultrasound-based relative tongue size (uRTS), as a cost-effective alternative to the magnetic resonance imaging (MRI) based method. Using deep learning to extract the tongue contour, uRTS was calculated from tongue and oropharyngeal cavity sizes in the midsagittal plane. Results from ten speakers showed a strong correlation between uRTS and MRI-based measurements (r = 0.87) and a negative correlation with tongue movement speed (r = -0.73), indicating uRTS is a useful index for assessing tongue size.</p>\",\"PeriodicalId\":73538,\"journal\":{\"name\":\"JASA express letters\",\"volume\":\"5 6\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JASA express letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0036838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0036838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
摘要
个体舌头相对于口腔的大小与发音速度有关[Feng, Lu, Zheng, Chi, and Honda,在第十届亚太言语、语言和听力双年展会议论文集(2017),第17-19页)],并可能影响言语清晰度。本研究介绍了一种基于超声测量相对舌头大小的方法,称为基于超声的相对舌头大小(uRTS),作为一种经济有效的替代基于磁共振成像(MRI)的方法。利用深度学习提取舌头轮廓,从中矢状面上的舌头和口咽腔大小计算uRTS。10名说话者的结果显示,uRTS和基于mri的测量结果之间存在很强的相关性(r = 0.87),而与舌速呈负相关(r = -0.73),这表明uRTS是评估舌大小的有用指标。
Ultrasound measurement of relative tongue size and its correlation with tongue mobility for healthy individuals.
The size of an individual's tongue relative to the oral cavity is associated with articulation speed [Feng, Lu, Zheng, Chi, and Honda, in Proceedings of the 10th Biennial Asia Pacific Conference on Speech, Language, and Hearing (2017), pp. 17-19)] and may affect speech clarity. This study introduces an ultrasound-based method for measuring relative tongue size, termed ultrasound-based relative tongue size (uRTS), as a cost-effective alternative to the magnetic resonance imaging (MRI) based method. Using deep learning to extract the tongue contour, uRTS was calculated from tongue and oropharyngeal cavity sizes in the midsagittal plane. Results from ten speakers showed a strong correlation between uRTS and MRI-based measurements (r = 0.87) and a negative correlation with tongue movement speed (r = -0.73), indicating uRTS is a useful index for assessing tongue size.