László Erdős, Joscha Henheik, Jana Reker, Volodymyr Riabov
{"title":"变形Wigner矩阵的预热化。","authors":"László Erdős, Joscha Henheik, Jana Reker, Volodymyr Riabov","doi":"10.1007/s00023-024-01518-y","DOIUrl":null,"url":null,"abstract":"<p><p>We prove that a class of weakly perturbed Hamiltonians of the form <math> <mrow><msub><mi>H</mi> <mi>λ</mi></msub> <mo>=</mo> <msub><mi>H</mi> <mn>0</mn></msub> <mo>+</mo> <mi>λ</mi> <mi>W</mi></mrow> </math> , with <i>W</i> being a Wigner matrix, exhibits <i>prethermalization</i>. That is, the time evolution generated by <math><msub><mi>H</mi> <mi>λ</mi></msub> </math> relaxes to its ultimate thermal state via an intermediate prethermal state with a lifetime of order <math><msup><mi>λ</mi> <mrow><mo>-</mo> <mn>2</mn></mrow> </msup> </math> . Moreover, we obtain a general relaxation formula, expressing the perturbed dynamics via the unperturbed dynamics and the ultimate thermal state. The proof relies on a two-resolvent law for the deformed Wigner matrix <math><msub><mi>H</mi> <mi>λ</mi></msub> </math> .</p>","PeriodicalId":72208,"journal":{"name":"Annales Henri Poincare","volume":"26 6","pages":"1991-2033"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133972/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prethermalization for Deformed Wigner Matrices.\",\"authors\":\"László Erdős, Joscha Henheik, Jana Reker, Volodymyr Riabov\",\"doi\":\"10.1007/s00023-024-01518-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We prove that a class of weakly perturbed Hamiltonians of the form <math> <mrow><msub><mi>H</mi> <mi>λ</mi></msub> <mo>=</mo> <msub><mi>H</mi> <mn>0</mn></msub> <mo>+</mo> <mi>λ</mi> <mi>W</mi></mrow> </math> , with <i>W</i> being a Wigner matrix, exhibits <i>prethermalization</i>. That is, the time evolution generated by <math><msub><mi>H</mi> <mi>λ</mi></msub> </math> relaxes to its ultimate thermal state via an intermediate prethermal state with a lifetime of order <math><msup><mi>λ</mi> <mrow><mo>-</mo> <mn>2</mn></mrow> </msup> </math> . Moreover, we obtain a general relaxation formula, expressing the perturbed dynamics via the unperturbed dynamics and the ultimate thermal state. The proof relies on a two-resolvent law for the deformed Wigner matrix <math><msub><mi>H</mi> <mi>λ</mi></msub> </math> .</p>\",\"PeriodicalId\":72208,\"journal\":{\"name\":\"Annales Henri Poincare\",\"volume\":\"26 6\",\"pages\":\"1991-2033\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133972/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00023-024-01518-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00023-024-01518-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
We prove that a class of weakly perturbed Hamiltonians of the form , with W being a Wigner matrix, exhibits prethermalization. That is, the time evolution generated by relaxes to its ultimate thermal state via an intermediate prethermal state with a lifetime of order . Moreover, we obtain a general relaxation formula, expressing the perturbed dynamics via the unperturbed dynamics and the ultimate thermal state. The proof relies on a two-resolvent law for the deformed Wigner matrix .