具有标签进化扩散和类掩码自关注的细胞生成。

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Wen Jing, Zixiang Jin, Yi Zhang, Guoxia Xu, Meng Zhao
{"title":"具有标签进化扩散和类掩码自关注的细胞生成。","authors":"Wen Jing, Zixiang Jin, Yi Zhang, Guoxia Xu, Meng Zhao","doi":"10.1007/s11548-025-03443-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Due to the relative difficulty in acquiring histopathological images, the generated cell morphology often presents a fixed pattern and lacks diversity. To this end, we propose the first diffusion generation model based on point diffusion, which can capture the changes and diversity of cell morphology in more detail.</p><p><strong>Methods: </strong>By gradually updating the information of cell morphology during the generation process, we can effectively guide the diffusion model to generate more diverse and realistic cell images. In addition, we introduce a class mask self-attention module to constrain the cell types generated by the diffusion model.</p><p><strong>Results: </strong>We conducted experiments on the public dataset Lizard, and comparative analysis with previous image generation methods showed that our method has excellent performance. Compared with the latest NASDM network, our method achieves a 43.17% improvement in FID and a 46.24% enhancement in IS.</p><p><strong>Conclusions: </strong>We proposed a first-of-its-kind diffusion model that combines point diffusion and class mask self-attention mechanisms. The model can effectively generate diverse data while maintaining the high quality of generated images and performs well.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell generation with label evolution diffusion and class mask self-attention.\",\"authors\":\"Wen Jing, Zixiang Jin, Yi Zhang, Guoxia Xu, Meng Zhao\",\"doi\":\"10.1007/s11548-025-03443-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Due to the relative difficulty in acquiring histopathological images, the generated cell morphology often presents a fixed pattern and lacks diversity. To this end, we propose the first diffusion generation model based on point diffusion, which can capture the changes and diversity of cell morphology in more detail.</p><p><strong>Methods: </strong>By gradually updating the information of cell morphology during the generation process, we can effectively guide the diffusion model to generate more diverse and realistic cell images. In addition, we introduce a class mask self-attention module to constrain the cell types generated by the diffusion model.</p><p><strong>Results: </strong>We conducted experiments on the public dataset Lizard, and comparative analysis with previous image generation methods showed that our method has excellent performance. Compared with the latest NASDM network, our method achieves a 43.17% improvement in FID and a 46.24% enhancement in IS.</p><p><strong>Conclusions: </strong>We proposed a first-of-its-kind diffusion model that combines point diffusion and class mask self-attention mechanisms. The model can effectively generate diverse data while maintaining the high quality of generated images and performs well.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-025-03443-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03443-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:由于获得组织病理图像相对困难,生成的细胞形态往往呈现固定模式,缺乏多样性。为此,我们提出了第一个基于点扩散的扩散生成模型,该模型可以更详细地捕捉细胞形态的变化和多样性。方法:通过在生成过程中逐步更新细胞形态信息,有效引导扩散模型生成更加多样化和逼真的细胞图像。此外,我们还引入了一个类掩码自关注模块来约束扩散模型生成的细胞类型。结果:我们在公共数据集Lizard上进行了实验,与之前的图像生成方法进行了对比分析,结果表明我们的方法具有优异的性能。与最新的NASDM网络相比,我们的方法在FID和IS方面分别提高了43.17%和46.24%。结论:我们提出了一个结合点扩散和类掩膜自注意机制的扩散模型。该模型能够有效地生成多样化的数据,同时保持生成图像的高质量,性能良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cell generation with label evolution diffusion and class mask self-attention.

Purpose: Due to the relative difficulty in acquiring histopathological images, the generated cell morphology often presents a fixed pattern and lacks diversity. To this end, we propose the first diffusion generation model based on point diffusion, which can capture the changes and diversity of cell morphology in more detail.

Methods: By gradually updating the information of cell morphology during the generation process, we can effectively guide the diffusion model to generate more diverse and realistic cell images. In addition, we introduce a class mask self-attention module to constrain the cell types generated by the diffusion model.

Results: We conducted experiments on the public dataset Lizard, and comparative analysis with previous image generation methods showed that our method has excellent performance. Compared with the latest NASDM network, our method achieves a 43.17% improvement in FID and a 46.24% enhancement in IS.

Conclusions: We proposed a first-of-its-kind diffusion model that combines point diffusion and class mask self-attention mechanisms. The model can effectively generate diverse data while maintaining the high quality of generated images and performs well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信