基于自适应灵敏度fisher正则化的腹腔镜视频血管分割异构迁移学习。

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Xinkai Zhao, Yuichiro Hayashi, Masahiro Oda, Takayuki Kitasaka, Kazunari Misawa, Kensaku Mori
{"title":"基于自适应灵敏度fisher正则化的腹腔镜视频血管分割异构迁移学习。","authors":"Xinkai Zhao, Yuichiro Hayashi, Masahiro Oda, Takayuki Kitasaka, Kazunari Misawa, Kensaku Mori","doi":"10.1007/s11548-025-03404-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to enhance surgical safety by developing a method for vascular segmentation in laparoscopic surgery videos with limited visibility. We introduce an adaptive sensitivity-fisher regularization (ASFR) approach to adapt neural networks, initially trained on non-medical datasets, for vascular segmentation in laparoscopic videos.</p><p><strong>Methods: </strong>Our approach utilizes heterogeneous transfer learning by integrating fisher information and sensitivity analysis to mitigate catastrophic forgetting and overfitting caused by limited annotated data in laparoscopic videos. We calculate fisher information to identify and preserve critical model parameters while using sensitivity measures to guide adjustment for new task.</p><p><strong>Results: </strong>The fine-tuned models demonstrated high accuracy in vascular segmentation across various complex video sequences, including those with obscured vessels. For both invisible and visible vessels, our method achieved an average Dice score of 41.3. In addition to outperforming traditional transfer learning approaches, our method exhibited strong adaptability across multiple advanced video segmentation architectures.</p><p><strong>Conclusion: </strong>This study introduces a novel heterogeneous transfer learning approach, ASFR, which significantly enhances the precision of vascular segmentation in laparoscopic videos. ASFR effectively addresses critical challenges in surgical image analysis and paves the way for broader applications in laparoscopic surgery, promising improved patient outcomes and increased surgical efficiency.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive sensitivity-fisher regularization for heterogeneous transfer learning of vascular segmentation in laparoscopic videos.\",\"authors\":\"Xinkai Zhao, Yuichiro Hayashi, Masahiro Oda, Takayuki Kitasaka, Kazunari Misawa, Kensaku Mori\",\"doi\":\"10.1007/s11548-025-03404-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aims to enhance surgical safety by developing a method for vascular segmentation in laparoscopic surgery videos with limited visibility. We introduce an adaptive sensitivity-fisher regularization (ASFR) approach to adapt neural networks, initially trained on non-medical datasets, for vascular segmentation in laparoscopic videos.</p><p><strong>Methods: </strong>Our approach utilizes heterogeneous transfer learning by integrating fisher information and sensitivity analysis to mitigate catastrophic forgetting and overfitting caused by limited annotated data in laparoscopic videos. We calculate fisher information to identify and preserve critical model parameters while using sensitivity measures to guide adjustment for new task.</p><p><strong>Results: </strong>The fine-tuned models demonstrated high accuracy in vascular segmentation across various complex video sequences, including those with obscured vessels. For both invisible and visible vessels, our method achieved an average Dice score of 41.3. In addition to outperforming traditional transfer learning approaches, our method exhibited strong adaptability across multiple advanced video segmentation architectures.</p><p><strong>Conclusion: </strong>This study introduces a novel heterogeneous transfer learning approach, ASFR, which significantly enhances the precision of vascular segmentation in laparoscopic videos. ASFR effectively addresses critical challenges in surgical image analysis and paves the way for broader applications in laparoscopic surgery, promising improved patient outcomes and increased surgical efficiency.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-025-03404-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03404-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在开发一种在能见度有限的腹腔镜手术视频中进行血管分割的方法,以提高手术安全性。我们引入了一种自适应灵敏度fisher正则化(ASFR)方法来适应神经网络,该神经网络最初是在非医疗数据集上训练的,用于腹腔镜视频中的血管分割。方法:我们的方法利用异质性迁移学习,通过整合fisher信息和敏感性分析来减轻腹腔镜视频中有限的注释数据引起的灾难性遗忘和过拟合。我们计算fisher信息来识别和保留关键模型参数,同时使用灵敏度措施来指导新任务的调整。结果:经过微调的模型在各种复杂的视频序列中显示出很高的血管分割精度,包括那些血管模糊的视频序列。对于不可见血管和可见血管,我们的方法的平均Dice得分为41.3。除了优于传统的迁移学习方法外,我们的方法在多个高级视频分割架构中表现出很强的适应性。结论:本研究引入了一种新的异质迁移学习方法ASFR,显著提高了腹腔镜视频中血管分割的精度。ASFR有效地解决了手术图像分析中的关键挑战,并为腹腔镜手术中更广泛的应用铺平了道路,有望改善患者的预后并提高手术效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive sensitivity-fisher regularization for heterogeneous transfer learning of vascular segmentation in laparoscopic videos.

Purpose: This study aims to enhance surgical safety by developing a method for vascular segmentation in laparoscopic surgery videos with limited visibility. We introduce an adaptive sensitivity-fisher regularization (ASFR) approach to adapt neural networks, initially trained on non-medical datasets, for vascular segmentation in laparoscopic videos.

Methods: Our approach utilizes heterogeneous transfer learning by integrating fisher information and sensitivity analysis to mitigate catastrophic forgetting and overfitting caused by limited annotated data in laparoscopic videos. We calculate fisher information to identify and preserve critical model parameters while using sensitivity measures to guide adjustment for new task.

Results: The fine-tuned models demonstrated high accuracy in vascular segmentation across various complex video sequences, including those with obscured vessels. For both invisible and visible vessels, our method achieved an average Dice score of 41.3. In addition to outperforming traditional transfer learning approaches, our method exhibited strong adaptability across multiple advanced video segmentation architectures.

Conclusion: This study introduces a novel heterogeneous transfer learning approach, ASFR, which significantly enhances the precision of vascular segmentation in laparoscopic videos. ASFR effectively addresses critical challenges in surgical image analysis and paves the way for broader applications in laparoscopic surgery, promising improved patient outcomes and increased surgical efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信