{"title":"代谢功能障碍相关脂肪变性肝病病理生理过程中的翻译后修饰","authors":"Yiyang Min, Yiqiao Zhang, Yu Ji, Shanshan Liu, Chengjian Guan, Luyang Wei, Huajing Yu, Zhongtao Zhang","doi":"10.1186/s13578-025-01411-z","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the prevalence of metabolic dysfunction‑associated steatotic liver disease (MASLD), which was called non-alcoholic fatty liver disease (NAFLD), has been progressively increasing in populations. The progression of MASLD encompasses a spectrum from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), and ultimately to cirrhosis or even hepatocellular carcinoma. During the early stages of the disease, lipid accumulation and endoplasmic reticulum stress may lead to abnormalities in hepatic DNA expression, protein synthesis, and post-translational modifications (PTMs). PTMs play a crucial role in the progression of MASLD and include histone and non-histone modifications, with major types including methylation, acetylation, ubiquitination, and phosphorylation. Numerous studies indicate that within MASLD-related signaling pathways, PTMs can modulate protein activity, localization, folding, and interactions by altering their physicochemical properties. This review summarizes various significant PTMs involved in MASLD progression to elucidate the regulatory mechanisms and pathogenesis associated with the disease.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"79"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143077/pdf/","citationCount":"0","resultStr":"{\"title\":\"Post-translational modifications in the pathophysiological process of metabolic dysfunction‑associated steatotic liver disease.\",\"authors\":\"Yiyang Min, Yiqiao Zhang, Yu Ji, Shanshan Liu, Chengjian Guan, Luyang Wei, Huajing Yu, Zhongtao Zhang\",\"doi\":\"10.1186/s13578-025-01411-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, the prevalence of metabolic dysfunction‑associated steatotic liver disease (MASLD), which was called non-alcoholic fatty liver disease (NAFLD), has been progressively increasing in populations. The progression of MASLD encompasses a spectrum from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), and ultimately to cirrhosis or even hepatocellular carcinoma. During the early stages of the disease, lipid accumulation and endoplasmic reticulum stress may lead to abnormalities in hepatic DNA expression, protein synthesis, and post-translational modifications (PTMs). PTMs play a crucial role in the progression of MASLD and include histone and non-histone modifications, with major types including methylation, acetylation, ubiquitination, and phosphorylation. Numerous studies indicate that within MASLD-related signaling pathways, PTMs can modulate protein activity, localization, folding, and interactions by altering their physicochemical properties. This review summarizes various significant PTMs involved in MASLD progression to elucidate the regulatory mechanisms and pathogenesis associated with the disease.</p>\",\"PeriodicalId\":49095,\"journal\":{\"name\":\"Cell and Bioscience\",\"volume\":\"15 1\",\"pages\":\"79\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143077/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Bioscience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13578-025-01411-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Bioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13578-025-01411-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Post-translational modifications in the pathophysiological process of metabolic dysfunction‑associated steatotic liver disease.
In recent years, the prevalence of metabolic dysfunction‑associated steatotic liver disease (MASLD), which was called non-alcoholic fatty liver disease (NAFLD), has been progressively increasing in populations. The progression of MASLD encompasses a spectrum from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), and ultimately to cirrhosis or even hepatocellular carcinoma. During the early stages of the disease, lipid accumulation and endoplasmic reticulum stress may lead to abnormalities in hepatic DNA expression, protein synthesis, and post-translational modifications (PTMs). PTMs play a crucial role in the progression of MASLD and include histone and non-histone modifications, with major types including methylation, acetylation, ubiquitination, and phosphorylation. Numerous studies indicate that within MASLD-related signaling pathways, PTMs can modulate protein activity, localization, folding, and interactions by altering their physicochemical properties. This review summarizes various significant PTMs involved in MASLD progression to elucidate the regulatory mechanisms and pathogenesis associated with the disease.
期刊介绍:
Cell and Bioscience, the official journal of the Society of Chinese Bioscientists in America, is an open access, peer-reviewed journal that encompasses all areas of life science research.