Anne Lotz, Thomas Behrens, Karl-Heinz Jöckel, Dirk Taeger
{"title":"删减变量的Bland-Altman图。","authors":"Anne Lotz, Thomas Behrens, Karl-Heinz Jöckel, Dirk Taeger","doi":"10.1002/sim.70147","DOIUrl":null,"url":null,"abstract":"<p><p>The comparison of two measurement methods turns out to be a statistical challenge if some of the observations are below the limit of quantification or detection. Here we show how the Bland-Altman plot can be modified for censored variables. The reference lines (bias and limits of agreement) in the Bland-Altman plot have to be estimated for censored variables. In a simulation study, we compared three different estimation methods: Restricting the data set to fully quantifiable pairs of observations (complete case analysis), naïvely substituting missing values with half of the limit of quantification, and a multiple imputation procedure based on a maximum likelihood approach for bivariate lognormally distributed variables with censoring. The results show that simple ad-hoc solutions may lead to bias in the results when comparing two measurement methods with censored observations, whereas the presented multiple imputation approach of the Bland-Altman method allows adequate consideration of censored variables. The method works similarly for other distribution assumptions.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 13-14","pages":"e70147"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141777/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bland-Altman Plot for Censored Variables.\",\"authors\":\"Anne Lotz, Thomas Behrens, Karl-Heinz Jöckel, Dirk Taeger\",\"doi\":\"10.1002/sim.70147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The comparison of two measurement methods turns out to be a statistical challenge if some of the observations are below the limit of quantification or detection. Here we show how the Bland-Altman plot can be modified for censored variables. The reference lines (bias and limits of agreement) in the Bland-Altman plot have to be estimated for censored variables. In a simulation study, we compared three different estimation methods: Restricting the data set to fully quantifiable pairs of observations (complete case analysis), naïvely substituting missing values with half of the limit of quantification, and a multiple imputation procedure based on a maximum likelihood approach for bivariate lognormally distributed variables with censoring. The results show that simple ad-hoc solutions may lead to bias in the results when comparing two measurement methods with censored observations, whereas the presented multiple imputation approach of the Bland-Altman method allows adequate consideration of censored variables. The method works similarly for other distribution assumptions.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\"44 13-14\",\"pages\":\"e70147\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141777/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.70147\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70147","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
The comparison of two measurement methods turns out to be a statistical challenge if some of the observations are below the limit of quantification or detection. Here we show how the Bland-Altman plot can be modified for censored variables. The reference lines (bias and limits of agreement) in the Bland-Altman plot have to be estimated for censored variables. In a simulation study, we compared three different estimation methods: Restricting the data set to fully quantifiable pairs of observations (complete case analysis), naïvely substituting missing values with half of the limit of quantification, and a multiple imputation procedure based on a maximum likelihood approach for bivariate lognormally distributed variables with censoring. The results show that simple ad-hoc solutions may lead to bias in the results when comparing two measurement methods with censored observations, whereas the presented multiple imputation approach of the Bland-Altman method allows adequate consideration of censored variables. The method works similarly for other distribution assumptions.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.