{"title":"使用机器学习预测早发性心肌梗死患者的mace风险。","authors":"Jing-Xian Wang, Miao-Miao Liang, Peng-Ju Lu, Zhuang Cui, Yan Liang, Yu-Hang Wang, An-Ran Jing, Jing Wang, Meng-Long Zhang, Yin Liu, Chang-Ping Li, Jing Gao","doi":"10.31083/RCM31298","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The study aimed to develop an interpretable machine learning (ML) model to assess and stratify the risk of long-term major adverse cardiovascular events (MACEs) in patients with premature myocardial infarction (PMI) and to analyze the key variables affecting prognosis.</p><p><strong>Methods: </strong>This prospective study consecutively included patients (male ≤50 years, female ≤55 years) diagnosed with acute myocardial infarction (AMI) at Tianjin Chest Hospital between January 2017 and December 2022. The study endpoint was the occurrence of MACEs during the follow-up period, which was defined as cardiac death, nonfatal stroke, readmission for heart failure, nonfatal recurrent myocardial infarction, and unplanned coronary revascularization. Four machine learning models were built: COX proportional hazards model (COX) regression, random survival forest (RSF), extreme gradient boosting (XGBoost), and DeepSurv. Models were evaluated using concordance index (C-index), Brier score, and decision curve analysis to select the best model for prediction and risk stratification.</p><p><strong>Results: </strong>A total of 1202 patients with PMI were included, with a median follow-up of 26 months, and MACEs occurred in 200 (16.6%) patients. The RSF model demonstrated the best predictive performance (C-index, 0.815; Brier, 0.125) and could effectively discriminate between high- and low-risk patients. The Kaplan-Meier curve demonstrated that patients categorized as low risk showed a better prognosis (<i>p</i> < 0.0001).</p><p><strong>Conclusions: </strong>The prognostic model constructed based on RSF can accurately assess and stratify the risk of long-term MACEs in PMI patients. This can help clinicians make more targeted decisions and treatments, thus delaying and reducing the occurrence of poor prognoses.</p>","PeriodicalId":20989,"journal":{"name":"Reviews in cardiovascular medicine","volume":"26 5","pages":"31298"},"PeriodicalIF":1.9000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135653/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using Machine Learning to Predict MACEs Risk in Patients with Premature Myocardial Infarction.\",\"authors\":\"Jing-Xian Wang, Miao-Miao Liang, Peng-Ju Lu, Zhuang Cui, Yan Liang, Yu-Hang Wang, An-Ran Jing, Jing Wang, Meng-Long Zhang, Yin Liu, Chang-Ping Li, Jing Gao\",\"doi\":\"10.31083/RCM31298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The study aimed to develop an interpretable machine learning (ML) model to assess and stratify the risk of long-term major adverse cardiovascular events (MACEs) in patients with premature myocardial infarction (PMI) and to analyze the key variables affecting prognosis.</p><p><strong>Methods: </strong>This prospective study consecutively included patients (male ≤50 years, female ≤55 years) diagnosed with acute myocardial infarction (AMI) at Tianjin Chest Hospital between January 2017 and December 2022. The study endpoint was the occurrence of MACEs during the follow-up period, which was defined as cardiac death, nonfatal stroke, readmission for heart failure, nonfatal recurrent myocardial infarction, and unplanned coronary revascularization. Four machine learning models were built: COX proportional hazards model (COX) regression, random survival forest (RSF), extreme gradient boosting (XGBoost), and DeepSurv. Models were evaluated using concordance index (C-index), Brier score, and decision curve analysis to select the best model for prediction and risk stratification.</p><p><strong>Results: </strong>A total of 1202 patients with PMI were included, with a median follow-up of 26 months, and MACEs occurred in 200 (16.6%) patients. The RSF model demonstrated the best predictive performance (C-index, 0.815; Brier, 0.125) and could effectively discriminate between high- and low-risk patients. The Kaplan-Meier curve demonstrated that patients categorized as low risk showed a better prognosis (<i>p</i> < 0.0001).</p><p><strong>Conclusions: </strong>The prognostic model constructed based on RSF can accurately assess and stratify the risk of long-term MACEs in PMI patients. This can help clinicians make more targeted decisions and treatments, thus delaying and reducing the occurrence of poor prognoses.</p>\",\"PeriodicalId\":20989,\"journal\":{\"name\":\"Reviews in cardiovascular medicine\",\"volume\":\"26 5\",\"pages\":\"31298\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135653/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in cardiovascular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.31083/RCM31298\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in cardiovascular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/RCM31298","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Using Machine Learning to Predict MACEs Risk in Patients with Premature Myocardial Infarction.
Background: The study aimed to develop an interpretable machine learning (ML) model to assess and stratify the risk of long-term major adverse cardiovascular events (MACEs) in patients with premature myocardial infarction (PMI) and to analyze the key variables affecting prognosis.
Methods: This prospective study consecutively included patients (male ≤50 years, female ≤55 years) diagnosed with acute myocardial infarction (AMI) at Tianjin Chest Hospital between January 2017 and December 2022. The study endpoint was the occurrence of MACEs during the follow-up period, which was defined as cardiac death, nonfatal stroke, readmission for heart failure, nonfatal recurrent myocardial infarction, and unplanned coronary revascularization. Four machine learning models were built: COX proportional hazards model (COX) regression, random survival forest (RSF), extreme gradient boosting (XGBoost), and DeepSurv. Models were evaluated using concordance index (C-index), Brier score, and decision curve analysis to select the best model for prediction and risk stratification.
Results: A total of 1202 patients with PMI were included, with a median follow-up of 26 months, and MACEs occurred in 200 (16.6%) patients. The RSF model demonstrated the best predictive performance (C-index, 0.815; Brier, 0.125) and could effectively discriminate between high- and low-risk patients. The Kaplan-Meier curve demonstrated that patients categorized as low risk showed a better prognosis (p < 0.0001).
Conclusions: The prognostic model constructed based on RSF can accurately assess and stratify the risk of long-term MACEs in PMI patients. This can help clinicians make more targeted decisions and treatments, thus delaying and reducing the occurrence of poor prognoses.
期刊介绍:
RCM is an international, peer-reviewed, open access journal. RCM publishes research articles, review papers and short communications on cardiovascular medicine as well as research on cardiovascular disease. We aim to provide a forum for publishing papers which explore the pathogenesis and promote the progression of cardiac and vascular diseases. We also seek to establish an interdisciplinary platform, focusing on translational issues, to facilitate the advancement of research, clinical treatment and diagnostic procedures. Heart surgery, cardiovascular imaging, risk factors and various clinical cardiac & vascular research will be considered.