线粒体tRNA加工缺陷重编程线粒体和细胞稳态。

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Gao Zhu, Yunfan He, Xincheng Li, Yun Xiao, Huisen Zhan, Maoli Duan, Min-Xin Guan
{"title":"线粒体tRNA加工缺陷重编程线粒体和细胞稳态。","authors":"Gao Zhu, Yunfan He, Xincheng Li, Yun Xiao, Huisen Zhan, Maoli Duan, Min-Xin Guan","doi":"10.1016/j.jbc.2025.110334","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial tRNA processing defects have been associated with some clinical presentations including deafness. Especially, a deafness-linked m.7516delA mutation impaired the 5' end processing of RNA precursors and mitochondrial translation. In this study, we investigated the mechanism by m.7516delA mutation induced-deficiencies mitigate organellular and cellular integrity. The m.7516delA mutation downregulated the expression of nucleus encoding subunits and upregulated assemble factors of complex IV and altered the assembly and activities of oxidative phosphorylation (OXPHOS) complexes. The impairment of OXPHOS alleviated mitochondrial quality control processes, including the imbalanced mitochondrial dynamics via increasing fission with abnormal mitochondrial morphology. The m.7516delA mutation upregulated both ubiquitin-dependent and independent mitophagy pathways, evidenced by increasing levels of Parkin, BNIP3, NIX and MFN2-ubiquitination and altering interaction between MFN2 and MUL1 or Parkin, to facilitate the degradation of severely damaged mitochondria. Strikingly, the m.7516delA mutation activated integrated stress response (ISR) pathway, evidenced by upregulation of GCN2, P-GCN2, p-eIF2α, CHOP, ATF4 and elevating the nucleus-location of ATF5 to minimizes the damages in defective mitochondria. Both activation of ISR and PINK1/Parkin mitophagy pathways ameliorate the cell homeostasis via elevating the autophagy process and upregulating apoptotic pathways. Our findings provide new insights into underlying aberrant RNA processing-induced dysfunctions reprogrammed organelles and cellular integrity.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"110334"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial tRNA processing defects reprogram mitochondrial and cellular homeostasis.\",\"authors\":\"Gao Zhu, Yunfan He, Xincheng Li, Yun Xiao, Huisen Zhan, Maoli Duan, Min-Xin Guan\",\"doi\":\"10.1016/j.jbc.2025.110334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial tRNA processing defects have been associated with some clinical presentations including deafness. Especially, a deafness-linked m.7516delA mutation impaired the 5' end processing of RNA precursors and mitochondrial translation. In this study, we investigated the mechanism by m.7516delA mutation induced-deficiencies mitigate organellular and cellular integrity. The m.7516delA mutation downregulated the expression of nucleus encoding subunits and upregulated assemble factors of complex IV and altered the assembly and activities of oxidative phosphorylation (OXPHOS) complexes. The impairment of OXPHOS alleviated mitochondrial quality control processes, including the imbalanced mitochondrial dynamics via increasing fission with abnormal mitochondrial morphology. The m.7516delA mutation upregulated both ubiquitin-dependent and independent mitophagy pathways, evidenced by increasing levels of Parkin, BNIP3, NIX and MFN2-ubiquitination and altering interaction between MFN2 and MUL1 or Parkin, to facilitate the degradation of severely damaged mitochondria. Strikingly, the m.7516delA mutation activated integrated stress response (ISR) pathway, evidenced by upregulation of GCN2, P-GCN2, p-eIF2α, CHOP, ATF4 and elevating the nucleus-location of ATF5 to minimizes the damages in defective mitochondria. Both activation of ISR and PINK1/Parkin mitophagy pathways ameliorate the cell homeostasis via elevating the autophagy process and upregulating apoptotic pathways. Our findings provide new insights into underlying aberrant RNA processing-induced dysfunctions reprogrammed organelles and cellular integrity.</p>\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\" \",\"pages\":\"110334\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.110334\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110334","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体tRNA加工缺陷与包括耳聋在内的一些临床表现有关。特别是,与耳聋相关的m.7516delA突变破坏了RNA前体的5'端加工和线粒体翻译。在这项研究中,我们研究了m.7516delA突变诱导的缺陷降低器官细胞和细胞完整性的机制。m.7516delA突变下调核编码亚基的表达,上调复合体IV的组装因子,改变氧化磷酸化(OXPHOS)复合体的组装和活性。OXPHOS的损伤减轻了线粒体质量控制过程,包括通过增加线粒体形态异常的裂变来减轻线粒体动力学的不平衡。m.7516delA突变上调泛素依赖性和独立的线粒体自噬途径,通过增加Parkin、BNIP3、NIX和MFN2泛素化水平以及改变MFN2与MUL1或Parkin之间的相互作用来促进严重受损线粒体的降解。引人注目的是,m.7516delA突变激活了综合应激反应(ISR)途径,其证据是上调GCN2、P-GCN2、p-eIF2α、CHOP、ATF4,并提高ATF5的核位置,以最大限度地减少缺陷线粒体的损伤。ISR和PINK1/Parkin有丝分裂通路的激活均通过提高自噬过程和上调凋亡通路来改善细胞稳态。我们的发现为潜在的异常RNA加工诱导的功能障碍、重编程细胞器和细胞完整性提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitochondrial tRNA processing defects reprogram mitochondrial and cellular homeostasis.

Mitochondrial tRNA processing defects have been associated with some clinical presentations including deafness. Especially, a deafness-linked m.7516delA mutation impaired the 5' end processing of RNA precursors and mitochondrial translation. In this study, we investigated the mechanism by m.7516delA mutation induced-deficiencies mitigate organellular and cellular integrity. The m.7516delA mutation downregulated the expression of nucleus encoding subunits and upregulated assemble factors of complex IV and altered the assembly and activities of oxidative phosphorylation (OXPHOS) complexes. The impairment of OXPHOS alleviated mitochondrial quality control processes, including the imbalanced mitochondrial dynamics via increasing fission with abnormal mitochondrial morphology. The m.7516delA mutation upregulated both ubiquitin-dependent and independent mitophagy pathways, evidenced by increasing levels of Parkin, BNIP3, NIX and MFN2-ubiquitination and altering interaction between MFN2 and MUL1 or Parkin, to facilitate the degradation of severely damaged mitochondria. Strikingly, the m.7516delA mutation activated integrated stress response (ISR) pathway, evidenced by upregulation of GCN2, P-GCN2, p-eIF2α, CHOP, ATF4 and elevating the nucleus-location of ATF5 to minimizes the damages in defective mitochondria. Both activation of ISR and PINK1/Parkin mitophagy pathways ameliorate the cell homeostasis via elevating the autophagy process and upregulating apoptotic pathways. Our findings provide new insights into underlying aberrant RNA processing-induced dysfunctions reprogrammed organelles and cellular integrity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信