Kevin G Field, Caleb P Massey, Kurt R Smith, Samuel A Briggs, Dalong Zhang, Kenneth C Littrell
{"title":"用于放射性样品表征的屏蔽磁小角中子散射。","authors":"Kevin G Field, Caleb P Massey, Kurt R Smith, Samuel A Briggs, Dalong Zhang, Kenneth C Littrell","doi":"10.1107/S1600576725003176","DOIUrl":null,"url":null,"abstract":"<p><p>The development of a Pb-shielded fixture for the execution of a small-angle neutron scattering (SANS)-based workflow for interrogation of highly irradiated nuclear materials has been explored. The Pb shielding was specially designed to reduce the detected radioactivity from the specimen during SANS experiments, and the overall configuration is termed shielded magnetic SANS (SM-SANS). Two FeCrAl-based alloys, C35M and 125YF, were examined with the SM-SANS technique using a free-form size distribution locally monodisperse model in both the as-received and irradiated states. Quantitative values derived from the free-form size distribution were compared with atom probe tomography experiments. Microstructural and compositional parameters determined using the two characterization techniques were complements of each other. The results demonstrate that the SM-SANS technique is an effective means of characterizing nanoscale clustering in irradiated material systems and provides new avenues for investigating radioactive material microstructures.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 3","pages":"1000-1014"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135976/pdf/","citationCount":"0","resultStr":"{\"title\":\"Shielded magnetic small-angle neutron scattering for characterization of radioactive samples.\",\"authors\":\"Kevin G Field, Caleb P Massey, Kurt R Smith, Samuel A Briggs, Dalong Zhang, Kenneth C Littrell\",\"doi\":\"10.1107/S1600576725003176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of a Pb-shielded fixture for the execution of a small-angle neutron scattering (SANS)-based workflow for interrogation of highly irradiated nuclear materials has been explored. The Pb shielding was specially designed to reduce the detected radioactivity from the specimen during SANS experiments, and the overall configuration is termed shielded magnetic SANS (SM-SANS). Two FeCrAl-based alloys, C35M and 125YF, were examined with the SM-SANS technique using a free-form size distribution locally monodisperse model in both the as-received and irradiated states. Quantitative values derived from the free-form size distribution were compared with atom probe tomography experiments. Microstructural and compositional parameters determined using the two characterization techniques were complements of each other. The results demonstrate that the SM-SANS technique is an effective means of characterizing nanoscale clustering in irradiated material systems and provides new avenues for investigating radioactive material microstructures.</p>\",\"PeriodicalId\":14950,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"58 Pt 3\",\"pages\":\"1000-1014\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135976/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600576725003176\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576725003176","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Shielded magnetic small-angle neutron scattering for characterization of radioactive samples.
The development of a Pb-shielded fixture for the execution of a small-angle neutron scattering (SANS)-based workflow for interrogation of highly irradiated nuclear materials has been explored. The Pb shielding was specially designed to reduce the detected radioactivity from the specimen during SANS experiments, and the overall configuration is termed shielded magnetic SANS (SM-SANS). Two FeCrAl-based alloys, C35M and 125YF, were examined with the SM-SANS technique using a free-form size distribution locally monodisperse model in both the as-received and irradiated states. Quantitative values derived from the free-form size distribution were compared with atom probe tomography experiments. Microstructural and compositional parameters determined using the two characterization techniques were complements of each other. The results demonstrate that the SM-SANS technique is an effective means of characterizing nanoscale clustering in irradiated material systems and provides new avenues for investigating radioactive material microstructures.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.