{"title":"基于机器学习的剪切胶体散射相关分析。","authors":"Lijie Ding, Yihao Chen, Changwoo Do","doi":"10.1107/S1600576725003280","DOIUrl":null,"url":null,"abstract":"<p><p>We have carried out theoretical analysis, Monte Carlo simulations and machine-learning analysis to quantify microscopic rearrangements of dilute dispersions of spherical colloidal particles from coherent scattering intensity. Both monodisperse and polydisperse dispersions of colloids were created and underwent a rearrangement consisting of an affine simple shear and non-affine rearrangement using the Monte Carlo method. We calculated the coherent scattering intensity of the dispersions and the correlation function of intensity before and after the rearrangement and generated a large data set of angular correlation functions for varying system parameters, including number density, polydispersity, shear strain and non-affine rearrangement. Singular value decomposition of the data set shows the feasibility of machine-learning inversion from the correlation function for the polydispersity, shear strain and non-affine rearrangement using only three parameters. A Gaussian process regressor is then trained on the data set and can retrieve the affine shear strain, non-affine rearrangement and polydispersity with relative errors of 3%, 1% and 6%, respectively. Altogether, our model provides a framework for quantitative studies of both steady and non-steady microscopic dynamics of colloidal dispersions using coherent scattering methods.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 3","pages":"992-999"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135991/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine-learning-informed scattering correlation analysis of sheared colloids.\",\"authors\":\"Lijie Ding, Yihao Chen, Changwoo Do\",\"doi\":\"10.1107/S1600576725003280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have carried out theoretical analysis, Monte Carlo simulations and machine-learning analysis to quantify microscopic rearrangements of dilute dispersions of spherical colloidal particles from coherent scattering intensity. Both monodisperse and polydisperse dispersions of colloids were created and underwent a rearrangement consisting of an affine simple shear and non-affine rearrangement using the Monte Carlo method. We calculated the coherent scattering intensity of the dispersions and the correlation function of intensity before and after the rearrangement and generated a large data set of angular correlation functions for varying system parameters, including number density, polydispersity, shear strain and non-affine rearrangement. Singular value decomposition of the data set shows the feasibility of machine-learning inversion from the correlation function for the polydispersity, shear strain and non-affine rearrangement using only three parameters. A Gaussian process regressor is then trained on the data set and can retrieve the affine shear strain, non-affine rearrangement and polydispersity with relative errors of 3%, 1% and 6%, respectively. Altogether, our model provides a framework for quantitative studies of both steady and non-steady microscopic dynamics of colloidal dispersions using coherent scattering methods.</p>\",\"PeriodicalId\":14950,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"58 Pt 3\",\"pages\":\"992-999\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135991/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600576725003280\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576725003280","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Machine-learning-informed scattering correlation analysis of sheared colloids.
We have carried out theoretical analysis, Monte Carlo simulations and machine-learning analysis to quantify microscopic rearrangements of dilute dispersions of spherical colloidal particles from coherent scattering intensity. Both monodisperse and polydisperse dispersions of colloids were created and underwent a rearrangement consisting of an affine simple shear and non-affine rearrangement using the Monte Carlo method. We calculated the coherent scattering intensity of the dispersions and the correlation function of intensity before and after the rearrangement and generated a large data set of angular correlation functions for varying system parameters, including number density, polydispersity, shear strain and non-affine rearrangement. Singular value decomposition of the data set shows the feasibility of machine-learning inversion from the correlation function for the polydispersity, shear strain and non-affine rearrangement using only three parameters. A Gaussian process regressor is then trained on the data set and can retrieve the affine shear strain, non-affine rearrangement and polydispersity with relative errors of 3%, 1% and 6%, respectively. Altogether, our model provides a framework for quantitative studies of both steady and non-steady microscopic dynamics of colloidal dispersions using coherent scattering methods.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.