线性化例程的参数空间概念,以确定晶体结构无需傅里叶反演。

IF 2.8 3区 材料科学 Q1 Biochemistry, Genetics and Molecular Biology
Journal of Applied Crystallography Pub Date : 2025-05-23 eCollection Date: 2025-06-01 DOI:10.1107/S1600576725001955
Muthu Vallinayagam, Melanie Nentwich, Dirk C Meyer, Matthias Zschornak
{"title":"线性化例程的参数空间概念,以确定晶体结构无需傅里叶反演。","authors":"Muthu Vallinayagam, Melanie Nentwich, Dirk C Meyer, Matthias Zschornak","doi":"10.1107/S1600576725001955","DOIUrl":null,"url":null,"abstract":"<p><p>We present the elaboration and first generally applicable linearization routines of the parameter space concept (PSC) for determining one-dimensionally projected structures of <i>m</i> independent scatterers. This crystal determination approach does not rely on Fourier inversion but rather considers all structure parameter combinations consistent with available diffraction data in a parameter space of dimension <i>m</i>. The method utilizes <i>m</i> structure-factor amplitudes or intensities represented by piecewise analytic hyper-surfaces to define the acceptable parameter regions. The coordinates of the point scatterers are obtained through the intersection of multiple isosurfaces. This approach allows for the detection of all possible solutions for the given structure-factor amplitudes in a single derivation. Taking the resonant contrast into account, the spatial resolution achieved by the presented method may exceed that of traditional Fourier inversion, and the algorithms can be significantly optimized by exploiting the symmetry properties of the isosurfaces. The applied one-dimensional projection demonstrates the efficiency of the PSC linearization approach based on fewer reflections than Fourier sums. Monte Carlo simulations, using the projections of various random two- and three-atom structure examples, are presented to illustrate the universal applicability of the proposed method. Furthermore, ongoing efforts aim to enhance the efficiency of data handling and to overcome current constraints, promising further advancements in the capabilities and accuracy of the PSC framework.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 3","pages":"768-788"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135979/pdf/","citationCount":"0","resultStr":"{\"title\":\"Linearization routines for the parameter space concept to determine crystal structures without Fourier inversion.\",\"authors\":\"Muthu Vallinayagam, Melanie Nentwich, Dirk C Meyer, Matthias Zschornak\",\"doi\":\"10.1107/S1600576725001955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present the elaboration and first generally applicable linearization routines of the parameter space concept (PSC) for determining one-dimensionally projected structures of <i>m</i> independent scatterers. This crystal determination approach does not rely on Fourier inversion but rather considers all structure parameter combinations consistent with available diffraction data in a parameter space of dimension <i>m</i>. The method utilizes <i>m</i> structure-factor amplitudes or intensities represented by piecewise analytic hyper-surfaces to define the acceptable parameter regions. The coordinates of the point scatterers are obtained through the intersection of multiple isosurfaces. This approach allows for the detection of all possible solutions for the given structure-factor amplitudes in a single derivation. Taking the resonant contrast into account, the spatial resolution achieved by the presented method may exceed that of traditional Fourier inversion, and the algorithms can be significantly optimized by exploiting the symmetry properties of the isosurfaces. The applied one-dimensional projection demonstrates the efficiency of the PSC linearization approach based on fewer reflections than Fourier sums. Monte Carlo simulations, using the projections of various random two- and three-atom structure examples, are presented to illustrate the universal applicability of the proposed method. Furthermore, ongoing efforts aim to enhance the efficiency of data handling and to overcome current constraints, promising further advancements in the capabilities and accuracy of the PSC framework.</p>\",\"PeriodicalId\":14950,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"58 Pt 3\",\"pages\":\"768-788\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135979/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600576725001955\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576725001955","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了参数空间概念(PSC)的细化和第一个普遍适用的线性化程序,用于确定m独立散射体的一维投影结构。这种晶体测定方法不依赖于傅里叶反演,而是考虑与m维参数空间中可用衍射数据一致的所有结构参数组合。该方法利用由分段解析超曲面表示的m个结构因子振幅或强度来定义可接受的参数区域。点散射体的坐标由多个等值面相交得到。这种方法允许在一次推导中检测给定结构因子振幅的所有可能解。考虑共振对比,该方法所获得的空间分辨率可能超过传统的傅里叶反演,并且利用等面的对称性可以显著优化算法。应用一维投影证明了基于更少反射的PSC线性化方法比傅立叶和的效率。蒙特卡罗模拟,使用各种随机的二原子和三原子结构的例子的投影,以说明所提出的方法的普遍适用性。此外,正在进行的努力旨在提高数据处理的效率,克服目前的限制,有望进一步提高PSC框架的能力和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linearization routines for the parameter space concept to determine crystal structures without Fourier inversion.

We present the elaboration and first generally applicable linearization routines of the parameter space concept (PSC) for determining one-dimensionally projected structures of m independent scatterers. This crystal determination approach does not rely on Fourier inversion but rather considers all structure parameter combinations consistent with available diffraction data in a parameter space of dimension m. The method utilizes m structure-factor amplitudes or intensities represented by piecewise analytic hyper-surfaces to define the acceptable parameter regions. The coordinates of the point scatterers are obtained through the intersection of multiple isosurfaces. This approach allows for the detection of all possible solutions for the given structure-factor amplitudes in a single derivation. Taking the resonant contrast into account, the spatial resolution achieved by the presented method may exceed that of traditional Fourier inversion, and the algorithms can be significantly optimized by exploiting the symmetry properties of the isosurfaces. The applied one-dimensional projection demonstrates the efficiency of the PSC linearization approach based on fewer reflections than Fourier sums. Monte Carlo simulations, using the projections of various random two- and three-atom structure examples, are presented to illustrate the universal applicability of the proposed method. Furthermore, ongoing efforts aim to enhance the efficiency of data handling and to overcome current constraints, promising further advancements in the capabilities and accuracy of the PSC framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
3.30%
发文量
178
审稿时长
4.7 months
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信