利用平滑先验知识的高斯过程回归增强对比变化小角中子散射部分散射函数估计方法。

IF 6.1 3区 材料科学 Q1 Biochemistry, Genetics and Molecular Biology
Journal of Applied Crystallography Pub Date : 2025-05-31 eCollection Date: 2025-06-01 DOI:10.1107/S1600576725003334
Ippei Obayashi, Shinya Miyajima, Kazuaki Tanaka, Koichi Mayumi
{"title":"利用平滑先验知识的高斯过程回归增强对比变化小角中子散射部分散射函数估计方法。","authors":"Ippei Obayashi, Shinya Miyajima, Kazuaki Tanaka, Koichi Mayumi","doi":"10.1107/S1600576725003334","DOIUrl":null,"url":null,"abstract":"<p><p>Contrast variation small-angle neutron scattering (CV-SANS) is a powerful tool for evaluating the structure of multi-component systems. In CV-SANS, the scattering intensities <i>I</i>(<i>Q</i>) measured with different scattering contrasts are de-com-posed into partial scattering functions <i>S</i>(<i>Q</i>) of the self- and cross-correlations between components. Since the measurement has a measurement error, <i>S</i>(<i>Q</i>) must be estimated statistically from <i>I</i>(<i>Q</i>). If no prior knowledge about <i>S</i>(<i>Q</i>) is available, the least-squares method is best, and this is the most popular estimation method. However, if prior knowledge is available, the estimation can be improved using Bayesian inference in a statistically authorized way. In this paper, we propose a novel method to improve the estimation of <i>S</i>(<i>Q</i>), based on Gaussian process regression using prior knowledge about the smoothness and flatness of <i>S</i>(<i>Q</i>). We demonstrate the method using synthetic core-shell and experimental polyrotaxane SANS data.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 3","pages":"976-991"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135983/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced estimation method for partial scattering functions in contrast variation small-angle neutron scattering via Gaussian process regression with prior knowledge of smoothness.\",\"authors\":\"Ippei Obayashi, Shinya Miyajima, Kazuaki Tanaka, Koichi Mayumi\",\"doi\":\"10.1107/S1600576725003334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Contrast variation small-angle neutron scattering (CV-SANS) is a powerful tool for evaluating the structure of multi-component systems. In CV-SANS, the scattering intensities <i>I</i>(<i>Q</i>) measured with different scattering contrasts are de-com-posed into partial scattering functions <i>S</i>(<i>Q</i>) of the self- and cross-correlations between components. Since the measurement has a measurement error, <i>S</i>(<i>Q</i>) must be estimated statistically from <i>I</i>(<i>Q</i>). If no prior knowledge about <i>S</i>(<i>Q</i>) is available, the least-squares method is best, and this is the most popular estimation method. However, if prior knowledge is available, the estimation can be improved using Bayesian inference in a statistically authorized way. In this paper, we propose a novel method to improve the estimation of <i>S</i>(<i>Q</i>), based on Gaussian process regression using prior knowledge about the smoothness and flatness of <i>S</i>(<i>Q</i>). We demonstrate the method using synthetic core-shell and experimental polyrotaxane SANS data.</p>\",\"PeriodicalId\":14950,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"58 Pt 3\",\"pages\":\"976-991\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135983/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600576725003334\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576725003334","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

对比变化小角中子散射(CV-SANS)是评价多组分体系结构的有力工具。在CV-SANS中,用不同散射对比度测量的散射强度I(Q)被分解成分量之间自相关和相互相关的部分散射函数S(Q)。由于测量存在测量误差,因此S(Q)必须由I(Q)进行统计估计。如果没有关于S(Q)的先验知识可用,最小二乘法是最好的,这是最流行的估计方法。然而,如果有先验知识,则可以使用贝叶斯推理以统计授权的方式改进估计。本文提出了一种改进S(Q)估计的新方法,该方法基于高斯过程回归,利用S(Q)的平滑性和平坦性的先验知识。我们用合成核壳和实验聚轮烷SANS数据证明了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced estimation method for partial scattering functions in contrast variation small-angle neutron scattering via Gaussian process regression with prior knowledge of smoothness.

Contrast variation small-angle neutron scattering (CV-SANS) is a powerful tool for evaluating the structure of multi-component systems. In CV-SANS, the scattering intensities I(Q) measured with different scattering contrasts are de-com-posed into partial scattering functions S(Q) of the self- and cross-correlations between components. Since the measurement has a measurement error, S(Q) must be estimated statistically from I(Q). If no prior knowledge about S(Q) is available, the least-squares method is best, and this is the most popular estimation method. However, if prior knowledge is available, the estimation can be improved using Bayesian inference in a statistically authorized way. In this paper, we propose a novel method to improve the estimation of S(Q), based on Gaussian process regression using prior knowledge about the smoothness and flatness of S(Q). We demonstrate the method using synthetic core-shell and experimental polyrotaxane SANS data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
3.30%
发文量
178
审稿时长
4.7 months
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信