{"title":"链长依赖性阿霉素嵌入聚乙二醇化脂质体引起的脂膜结构变化。","authors":"Jia-Jhen Kang, Zhih-Chen Huang, Li-Wen Tang, Chun-Jen Su, Hua-De Gao, Hsien-Ming Lee, U-Ser Jeng","doi":"10.1107/S1600576725003577","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(ethyl-ene glycol)-grafted (PEGylated) liposomes receive increasingly more attention due to their practical applications in delivering vaccines, nutrients and drug molecules such as doxorubicin (DOX). PEGylated liposomes have been well documented for their capability in carrying DOX as rod-like crystallites enclosed inside the unilamellar vesicles. This study addresses the previously unresolved question of whether DOX intercalates into liposome bilayers by employing simultaneous small- and wide-angle X-ray scattering (SWAXS), complemented by an integrated asymmetric flow field-flow fractionation system coupled with multi-angle light scattering, dynamic light scattering and refractive index detection. The DOX-loaded PEGylated liposomes used are composed of phosphatidylcholine (<i>N</i>:0 PC) lipids, with different lipid chain lengths <i>N</i> = 18, 20 and 22, and a fixed molar ratio of lipid:cholesterol:DSPE-PEG2000 of 45:50:5. SWAXS analysis reveals that rod-like DOX nanocrystallites-approximately 70-95 nm in length and 14 nm in diameter-are encapsulated within the PEGylated liposomes across all three lipid types, with each exhibiting distinct membrane structural responses to DOX incorporation. Notably, 22:0 PC liposomes demonstrate significant DOX-induced disruption of lipid chain packing, accompanied by enhanced alignment of phosphate headgroups in the outer leaflet. Consistently, cryo-EM imaging reveals pronounced faceted membrane morphologies in DOX-loaded 22:0 PC liposomes. This faceting phenomenon is attributed to the accumulation of DOX within the excess hydro-phobic core regions created by the extended aliphatic chains beyond the cholesterol saturation limit. These DOX-enriched domains locally stiffen the membrane, promoting the formation of rigid, faceted structures.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 3","pages":"897-908"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135973/pdf/","citationCount":"0","resultStr":"{\"title\":\"Changes of the lipid membrane structures caused by chain-length-dependent doxorubicin embedment in PEGylated liposomes.\",\"authors\":\"Jia-Jhen Kang, Zhih-Chen Huang, Li-Wen Tang, Chun-Jen Su, Hua-De Gao, Hsien-Ming Lee, U-Ser Jeng\",\"doi\":\"10.1107/S1600576725003577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Poly(ethyl-ene glycol)-grafted (PEGylated) liposomes receive increasingly more attention due to their practical applications in delivering vaccines, nutrients and drug molecules such as doxorubicin (DOX). PEGylated liposomes have been well documented for their capability in carrying DOX as rod-like crystallites enclosed inside the unilamellar vesicles. This study addresses the previously unresolved question of whether DOX intercalates into liposome bilayers by employing simultaneous small- and wide-angle X-ray scattering (SWAXS), complemented by an integrated asymmetric flow field-flow fractionation system coupled with multi-angle light scattering, dynamic light scattering and refractive index detection. The DOX-loaded PEGylated liposomes used are composed of phosphatidylcholine (<i>N</i>:0 PC) lipids, with different lipid chain lengths <i>N</i> = 18, 20 and 22, and a fixed molar ratio of lipid:cholesterol:DSPE-PEG2000 of 45:50:5. SWAXS analysis reveals that rod-like DOX nanocrystallites-approximately 70-95 nm in length and 14 nm in diameter-are encapsulated within the PEGylated liposomes across all three lipid types, with each exhibiting distinct membrane structural responses to DOX incorporation. Notably, 22:0 PC liposomes demonstrate significant DOX-induced disruption of lipid chain packing, accompanied by enhanced alignment of phosphate headgroups in the outer leaflet. Consistently, cryo-EM imaging reveals pronounced faceted membrane morphologies in DOX-loaded 22:0 PC liposomes. This faceting phenomenon is attributed to the accumulation of DOX within the excess hydro-phobic core regions created by the extended aliphatic chains beyond the cholesterol saturation limit. These DOX-enriched domains locally stiffen the membrane, promoting the formation of rigid, faceted structures.</p>\",\"PeriodicalId\":14950,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"58 Pt 3\",\"pages\":\"897-908\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135973/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600576725003577\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576725003577","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Changes of the lipid membrane structures caused by chain-length-dependent doxorubicin embedment in PEGylated liposomes.
Poly(ethyl-ene glycol)-grafted (PEGylated) liposomes receive increasingly more attention due to their practical applications in delivering vaccines, nutrients and drug molecules such as doxorubicin (DOX). PEGylated liposomes have been well documented for their capability in carrying DOX as rod-like crystallites enclosed inside the unilamellar vesicles. This study addresses the previously unresolved question of whether DOX intercalates into liposome bilayers by employing simultaneous small- and wide-angle X-ray scattering (SWAXS), complemented by an integrated asymmetric flow field-flow fractionation system coupled with multi-angle light scattering, dynamic light scattering and refractive index detection. The DOX-loaded PEGylated liposomes used are composed of phosphatidylcholine (N:0 PC) lipids, with different lipid chain lengths N = 18, 20 and 22, and a fixed molar ratio of lipid:cholesterol:DSPE-PEG2000 of 45:50:5. SWAXS analysis reveals that rod-like DOX nanocrystallites-approximately 70-95 nm in length and 14 nm in diameter-are encapsulated within the PEGylated liposomes across all three lipid types, with each exhibiting distinct membrane structural responses to DOX incorporation. Notably, 22:0 PC liposomes demonstrate significant DOX-induced disruption of lipid chain packing, accompanied by enhanced alignment of phosphate headgroups in the outer leaflet. Consistently, cryo-EM imaging reveals pronounced faceted membrane morphologies in DOX-loaded 22:0 PC liposomes. This faceting phenomenon is attributed to the accumulation of DOX within the excess hydro-phobic core regions created by the extended aliphatic chains beyond the cholesterol saturation limit. These DOX-enriched domains locally stiffen the membrane, promoting the formation of rigid, faceted structures.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.