了解线粒体DNA突变对衰老和致癌的影响(综述)。

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
International journal of molecular medicine Pub Date : 2025-08-01 Epub Date: 2025-06-06 DOI:10.3892/ijmm.2025.5559
Hiroshi Kobayashi, Shogo Imanaka
{"title":"了解线粒体DNA突变对衰老和致癌的影响(综述)。","authors":"Hiroshi Kobayashi, Shogo Imanaka","doi":"10.3892/ijmm.2025.5559","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria and mitochondrial DNA (mtDNA) are crucial for cellular energy metabolism and the adaptive response to environmental changes. mtDNA collaborates with the nuclear genome to regulate mitochondrial function. Dysfunctional mitochondria and mutations in mtDNA are implicated in a wide range of diseases, including mitochondrial disorders, neurodegenerative conditions, age‑associated pathologies and cancer. While the nuclear genome has been extensively studied for its role in driving the clonal expansion of oncogenes and other aging‑related genetic alterations, knowledge regarding mtDNA remains comparatively limited. However, advances in quantitative analysis have provided information regarding the complex patterns of mtDNA mutations. The present review offers a detailed examination of mtDNA mutations and their classifications in the contexts of aging and cancer, and elucidates the role of mtDNA mutations in these processes. Mutations in mtDNA can be detected as early as the neonatal stage, yet most transition mutations retain a normal cellular phenotype. In contrast to mutations in oncogenes and tumor suppressor genes within the nuclear genome, mtDNA exhibits conserved mutational signatures, irrespective of cancer tissue origin. To adapt to the aging process, mitochondria undergo clonal expansion of advantageous mtDNA mutations, maintaining a dynamic equilibrium among various mitochondrial clones. Over time, however, the loss of strand bias can disrupt this equilibrium, diminishing the pool of adaptive clones. This breakdown in mitochondrial homeostasis may contribute to tumorigenesis. In conclusion, the heterogeneity of mtDNA mutations and the collapse of its homeostasis are pivotal in the progression of age‑related diseases, including cancer, underscoring the importance of mtDNA mutations in health and disease.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"56 2","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176274/pdf/","citationCount":"0","resultStr":"{\"title\":\"Understanding the impact of mitochondrial DNA mutations on aging and carcinogenesis (Review).\",\"authors\":\"Hiroshi Kobayashi, Shogo Imanaka\",\"doi\":\"10.3892/ijmm.2025.5559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria and mitochondrial DNA (mtDNA) are crucial for cellular energy metabolism and the adaptive response to environmental changes. mtDNA collaborates with the nuclear genome to regulate mitochondrial function. Dysfunctional mitochondria and mutations in mtDNA are implicated in a wide range of diseases, including mitochondrial disorders, neurodegenerative conditions, age‑associated pathologies and cancer. While the nuclear genome has been extensively studied for its role in driving the clonal expansion of oncogenes and other aging‑related genetic alterations, knowledge regarding mtDNA remains comparatively limited. However, advances in quantitative analysis have provided information regarding the complex patterns of mtDNA mutations. The present review offers a detailed examination of mtDNA mutations and their classifications in the contexts of aging and cancer, and elucidates the role of mtDNA mutations in these processes. Mutations in mtDNA can be detected as early as the neonatal stage, yet most transition mutations retain a normal cellular phenotype. In contrast to mutations in oncogenes and tumor suppressor genes within the nuclear genome, mtDNA exhibits conserved mutational signatures, irrespective of cancer tissue origin. To adapt to the aging process, mitochondria undergo clonal expansion of advantageous mtDNA mutations, maintaining a dynamic equilibrium among various mitochondrial clones. Over time, however, the loss of strand bias can disrupt this equilibrium, diminishing the pool of adaptive clones. This breakdown in mitochondrial homeostasis may contribute to tumorigenesis. In conclusion, the heterogeneity of mtDNA mutations and the collapse of its homeostasis are pivotal in the progression of age‑related diseases, including cancer, underscoring the importance of mtDNA mutations in health and disease.</p>\",\"PeriodicalId\":14086,\"journal\":{\"name\":\"International journal of molecular medicine\",\"volume\":\"56 2\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176274/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijmm.2025.5559\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2025.5559","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

线粒体和线粒体DNA (mtDNA)对细胞能量代谢和对环境变化的适应性反应至关重要。mtDNA与核基因组协同调节线粒体功能。线粒体功能失调和mtDNA突变与多种疾病有关,包括线粒体疾病、神经退行性疾病、年龄相关病理和癌症。虽然核基因组在驱动癌基因克隆扩增和其他与衰老相关的遗传改变中的作用已被广泛研究,但关于mtDNA的知识仍然相对有限。然而,定量分析的进步提供了有关mtDNA突变复杂模式的信息。本文对mtDNA突变及其在衰老和癌症中的分类进行了详细的研究,并阐明了mtDNA突变在这些过程中的作用。mtDNA突变可以早在新生儿阶段检测到,但大多数过渡突变保留正常的细胞表型。与核基因组中致癌基因和肿瘤抑制基因的突变相比,mtDNA表现出保守的突变特征,与癌症组织起源无关。为了适应衰老过程,线粒体进行有利mtDNA突变的克隆扩增,维持各种线粒体克隆之间的动态平衡。然而,随着时间的推移,链偏倚的丧失会破坏这种平衡,减少适应性克隆的数量。线粒体稳态的破坏可能导致肿瘤的发生。总之,mtDNA突变的异质性及其稳态的崩溃在包括癌症在内的年龄相关疾病的进展中起着关键作用,强调了mtDNA突变在健康和疾病中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the impact of mitochondrial DNA mutations on aging and carcinogenesis (Review).

Mitochondria and mitochondrial DNA (mtDNA) are crucial for cellular energy metabolism and the adaptive response to environmental changes. mtDNA collaborates with the nuclear genome to regulate mitochondrial function. Dysfunctional mitochondria and mutations in mtDNA are implicated in a wide range of diseases, including mitochondrial disorders, neurodegenerative conditions, age‑associated pathologies and cancer. While the nuclear genome has been extensively studied for its role in driving the clonal expansion of oncogenes and other aging‑related genetic alterations, knowledge regarding mtDNA remains comparatively limited. However, advances in quantitative analysis have provided information regarding the complex patterns of mtDNA mutations. The present review offers a detailed examination of mtDNA mutations and their classifications in the contexts of aging and cancer, and elucidates the role of mtDNA mutations in these processes. Mutations in mtDNA can be detected as early as the neonatal stage, yet most transition mutations retain a normal cellular phenotype. In contrast to mutations in oncogenes and tumor suppressor genes within the nuclear genome, mtDNA exhibits conserved mutational signatures, irrespective of cancer tissue origin. To adapt to the aging process, mitochondria undergo clonal expansion of advantageous mtDNA mutations, maintaining a dynamic equilibrium among various mitochondrial clones. Over time, however, the loss of strand bias can disrupt this equilibrium, diminishing the pool of adaptive clones. This breakdown in mitochondrial homeostasis may contribute to tumorigenesis. In conclusion, the heterogeneity of mtDNA mutations and the collapse of its homeostasis are pivotal in the progression of age‑related diseases, including cancer, underscoring the importance of mtDNA mutations in health and disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of molecular medicine
International journal of molecular medicine 医学-医学:研究与实验
CiteScore
12.30
自引率
0.00%
发文量
124
审稿时长
3 months
期刊介绍: The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality. The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research. All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信