Hong Chen, Xie Wang, Jin Xing, Yue Pu, Hao Ye, Ying Ma, Juan Zhang
{"title":"铜突起在Wilson病发病机制中的作用和机制(综述)。","authors":"Hong Chen, Xie Wang, Jin Xing, Yue Pu, Hao Ye, Ying Ma, Juan Zhang","doi":"10.3892/ijmm.2025.5558","DOIUrl":null,"url":null,"abstract":"<p><p>Copper, an indispensable trace element in living organisms, plays a pivotal role in human physiological processes. Wilson's disease (WD), an inherited disorder of copper metabolism, is caused by mutations in the ATP7B gene. This genetic malfunction disrupts the dynamics of copper transport and metabolism, thereby impairing ceruloplasmin synthesis and copper excretion. The resultant accumulation of copper in various tissues and organs precipitates a cascade of cellular demise and functional impairment. Notably, cuproptosis, a recently discovered copper‑dependent regulated cell death mechanism, distinctly deviates from conventional cell death paradigms. This novel mode of cell death involves the interaction of copper with lipoacylated proteins within the tricarboxylic acid cycle, leading to proteinotoxic stress and culminating in cell death. In the realm of pathophysiology, cuproptosis has emerged as a pivotal player in a spectrum of diseases, with WD standing as a paradigm closely intertwined with the dysregulation of copper metabolism. This study aimed to encapsulate the pivotal molecular underpinnings of cuproptosis and delve into its crucial involvement in the etiopathogenesis of WD. By elucidating these mechanisms, the present analysis contributes significantly to the nuanced understanding of the pathological underpinnings of WD, thereby providing fresh insights and evidence that may direct innovative therapeutic strategies for this condition.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"56 2","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140093/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role and mechanisms of cuproptosis in the pathogenesis of Wilson's disease (Review).\",\"authors\":\"Hong Chen, Xie Wang, Jin Xing, Yue Pu, Hao Ye, Ying Ma, Juan Zhang\",\"doi\":\"10.3892/ijmm.2025.5558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Copper, an indispensable trace element in living organisms, plays a pivotal role in human physiological processes. Wilson's disease (WD), an inherited disorder of copper metabolism, is caused by mutations in the ATP7B gene. This genetic malfunction disrupts the dynamics of copper transport and metabolism, thereby impairing ceruloplasmin synthesis and copper excretion. The resultant accumulation of copper in various tissues and organs precipitates a cascade of cellular demise and functional impairment. Notably, cuproptosis, a recently discovered copper‑dependent regulated cell death mechanism, distinctly deviates from conventional cell death paradigms. This novel mode of cell death involves the interaction of copper with lipoacylated proteins within the tricarboxylic acid cycle, leading to proteinotoxic stress and culminating in cell death. In the realm of pathophysiology, cuproptosis has emerged as a pivotal player in a spectrum of diseases, with WD standing as a paradigm closely intertwined with the dysregulation of copper metabolism. This study aimed to encapsulate the pivotal molecular underpinnings of cuproptosis and delve into its crucial involvement in the etiopathogenesis of WD. By elucidating these mechanisms, the present analysis contributes significantly to the nuanced understanding of the pathological underpinnings of WD, thereby providing fresh insights and evidence that may direct innovative therapeutic strategies for this condition.</p>\",\"PeriodicalId\":14086,\"journal\":{\"name\":\"International journal of molecular medicine\",\"volume\":\"56 2\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140093/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijmm.2025.5558\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2025.5558","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Role and mechanisms of cuproptosis in the pathogenesis of Wilson's disease (Review).
Copper, an indispensable trace element in living organisms, plays a pivotal role in human physiological processes. Wilson's disease (WD), an inherited disorder of copper metabolism, is caused by mutations in the ATP7B gene. This genetic malfunction disrupts the dynamics of copper transport and metabolism, thereby impairing ceruloplasmin synthesis and copper excretion. The resultant accumulation of copper in various tissues and organs precipitates a cascade of cellular demise and functional impairment. Notably, cuproptosis, a recently discovered copper‑dependent regulated cell death mechanism, distinctly deviates from conventional cell death paradigms. This novel mode of cell death involves the interaction of copper with lipoacylated proteins within the tricarboxylic acid cycle, leading to proteinotoxic stress and culminating in cell death. In the realm of pathophysiology, cuproptosis has emerged as a pivotal player in a spectrum of diseases, with WD standing as a paradigm closely intertwined with the dysregulation of copper metabolism. This study aimed to encapsulate the pivotal molecular underpinnings of cuproptosis and delve into its crucial involvement in the etiopathogenesis of WD. By elucidating these mechanisms, the present analysis contributes significantly to the nuanced understanding of the pathological underpinnings of WD, thereby providing fresh insights and evidence that may direct innovative therapeutic strategies for this condition.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.