Ethan B Schonhaut, Keaton L Scherpereel, Aaron J Young
{"title":"肌电图信息是深度学习估计关节和肌肉水平状态所必需的吗?","authors":"Ethan B Schonhaut, Keaton L Scherpereel, Aaron J Young","doi":"10.1109/TBME.2025.3577084","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Accurate, non-invasive methods for estimating joint and muscle physiological states have the potential to greatly enhance control of wearable devices during real-world ambulation. Traditional modeling approaches and current estimation methods used to predict muscle dynamics often rely on complex equipment or computationally intensive simulations and have difficulty estimating across a broad spectrum of tasks or subjects.</p><p><strong>Methods: </strong>Our approach used deep learning (DL) models trained on kinematic inputs to estimate internal physiological states at the knee, including moment, power, velocity, and force. We assessed each model's performance against ground truth labels from both a commonly used, standard OpenSim musculoskeletal model without EMG (static optimization) and an EMG-informed method (CEINMS), across 28 different cyclic and noncyclic tasks.</p><p><strong>Results: </strong>EMG provided no benefit for joint moment/power estimation (e.g., biological moment), but was critical for estimating muscle states. Models trained with EMG-informed labels but without EMG as an input to the DL system significantly outperformed models trained without EMG (e.g., 33.7% improvement for muscle moment estimation) (p < 0.05). Models that included EMG-informed labels and EMG as a model input demonstrated even higher performance (49.7% improvement for muscle moment estimation) (p < 0.05), but require the availability of EMG during model deployment, which may be impractical.</p><p><strong>Conclusion/significance: </strong>While EMG information is not necessary for estimating joint level states, there is a clear benefit during muscle level state estimation. Our results demonstrate excellent tracking of these states with EMG included only during training, highlighting the practicality of real-time deployment of this approach.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is EMG Information Necessary for Deep Learning Estimation of Joint and Muscle Level States?\",\"authors\":\"Ethan B Schonhaut, Keaton L Scherpereel, Aaron J Young\",\"doi\":\"10.1109/TBME.2025.3577084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Accurate, non-invasive methods for estimating joint and muscle physiological states have the potential to greatly enhance control of wearable devices during real-world ambulation. Traditional modeling approaches and current estimation methods used to predict muscle dynamics often rely on complex equipment or computationally intensive simulations and have difficulty estimating across a broad spectrum of tasks or subjects.</p><p><strong>Methods: </strong>Our approach used deep learning (DL) models trained on kinematic inputs to estimate internal physiological states at the knee, including moment, power, velocity, and force. We assessed each model's performance against ground truth labels from both a commonly used, standard OpenSim musculoskeletal model without EMG (static optimization) and an EMG-informed method (CEINMS), across 28 different cyclic and noncyclic tasks.</p><p><strong>Results: </strong>EMG provided no benefit for joint moment/power estimation (e.g., biological moment), but was critical for estimating muscle states. Models trained with EMG-informed labels but without EMG as an input to the DL system significantly outperformed models trained without EMG (e.g., 33.7% improvement for muscle moment estimation) (p < 0.05). Models that included EMG-informed labels and EMG as a model input demonstrated even higher performance (49.7% improvement for muscle moment estimation) (p < 0.05), but require the availability of EMG during model deployment, which may be impractical.</p><p><strong>Conclusion/significance: </strong>While EMG information is not necessary for estimating joint level states, there is a clear benefit during muscle level state estimation. Our results demonstrate excellent tracking of these states with EMG included only during training, highlighting the practicality of real-time deployment of this approach.</p>\",\"PeriodicalId\":13245,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBME.2025.3577084\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3577084","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Is EMG Information Necessary for Deep Learning Estimation of Joint and Muscle Level States?
Objective: Accurate, non-invasive methods for estimating joint and muscle physiological states have the potential to greatly enhance control of wearable devices during real-world ambulation. Traditional modeling approaches and current estimation methods used to predict muscle dynamics often rely on complex equipment or computationally intensive simulations and have difficulty estimating across a broad spectrum of tasks or subjects.
Methods: Our approach used deep learning (DL) models trained on kinematic inputs to estimate internal physiological states at the knee, including moment, power, velocity, and force. We assessed each model's performance against ground truth labels from both a commonly used, standard OpenSim musculoskeletal model without EMG (static optimization) and an EMG-informed method (CEINMS), across 28 different cyclic and noncyclic tasks.
Results: EMG provided no benefit for joint moment/power estimation (e.g., biological moment), but was critical for estimating muscle states. Models trained with EMG-informed labels but without EMG as an input to the DL system significantly outperformed models trained without EMG (e.g., 33.7% improvement for muscle moment estimation) (p < 0.05). Models that included EMG-informed labels and EMG as a model input demonstrated even higher performance (49.7% improvement for muscle moment estimation) (p < 0.05), but require the availability of EMG during model deployment, which may be impractical.
Conclusion/significance: While EMG information is not necessary for estimating joint level states, there is a clear benefit during muscle level state estimation. Our results demonstrate excellent tracking of these states with EMG included only during training, highlighting the practicality of real-time deployment of this approach.
期刊介绍:
IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.