通过基于注意的监督图表示学习,guide在空间转录组学中推进标签转移。

IF 2.8 3区 生物学 Q2 GENETICS & HEREDITY
Frontiers in Genetics Pub Date : 2025-05-22 eCollection Date: 2025-01-01 DOI:10.3389/fgene.2025.1566675
Yupeng Xu, Hao Dai, Jinwang Feng, Keren Xu, Qiu Wang, Pingting Gao, Chunman Zuo
{"title":"通过基于注意的监督图表示学习,guide在空间转录组学中推进标签转移。","authors":"Yupeng Xu, Hao Dai, Jinwang Feng, Keren Xu, Qiu Wang, Pingting Gao, Chunman Zuo","doi":"10.3389/fgene.2025.1566675","DOIUrl":null,"url":null,"abstract":"<p><p>The growing availability of spatial transcriptomics data offers key resources for annotating query datasets using reference datasets. However, batch effects, unbalanced reference annotations, and tissue heterogeneity pose significant challenges to alignment analysis. Here, we present stGuide, an attention-based supervised graph learning model designed for cross-slice alignment and efficient label transfer from reference to query datasets. stGuide leverages supervised representations guided by reference annotations to map query slices into a shared embedding space using an attention-based mechanism. It then assigns spot-level labels by incorporating information from the nearest neighbors in the learned representation. Using human dorsolateral prefrontal cortex and breast cancer datasets, stGuide demonstrates its capabilities by (i) producing category-guided, low-dimensional features with well-mixed slices; (ii) transferring labels effectively across heterogeneous tissues; and (iii) uncovering relationships between clusters. Comparisons with state-of-the-art methods demonstrate that stGuide consistently outperforms existing approaches, positioning it as a robust and versatile tool for spatial transcriptomics analysis.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":"16 ","pages":"1566675"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137301/pdf/","citationCount":"0","resultStr":"{\"title\":\"stGuide advances label transfer in spatial transcriptomics through attention-based supervised graph representation learning.\",\"authors\":\"Yupeng Xu, Hao Dai, Jinwang Feng, Keren Xu, Qiu Wang, Pingting Gao, Chunman Zuo\",\"doi\":\"10.3389/fgene.2025.1566675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The growing availability of spatial transcriptomics data offers key resources for annotating query datasets using reference datasets. However, batch effects, unbalanced reference annotations, and tissue heterogeneity pose significant challenges to alignment analysis. Here, we present stGuide, an attention-based supervised graph learning model designed for cross-slice alignment and efficient label transfer from reference to query datasets. stGuide leverages supervised representations guided by reference annotations to map query slices into a shared embedding space using an attention-based mechanism. It then assigns spot-level labels by incorporating information from the nearest neighbors in the learned representation. Using human dorsolateral prefrontal cortex and breast cancer datasets, stGuide demonstrates its capabilities by (i) producing category-guided, low-dimensional features with well-mixed slices; (ii) transferring labels effectively across heterogeneous tissues; and (iii) uncovering relationships between clusters. Comparisons with state-of-the-art methods demonstrate that stGuide consistently outperforms existing approaches, positioning it as a robust and versatile tool for spatial transcriptomics analysis.</p>\",\"PeriodicalId\":12750,\"journal\":{\"name\":\"Frontiers in Genetics\",\"volume\":\"16 \",\"pages\":\"1566675\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137301/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fgene.2025.1566675\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2025.1566675","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的空间转录组学数据为使用参考数据集注释查询数据集提供了关键资源。然而,批效应、不平衡的参考注释和组织异质性给比对分析带来了重大挑战。在这里,我们提出了stGuide,一个基于注意力的监督图学习模型,设计用于横向切片对齐和从参考数据集到查询数据集的有效标签转移。stGuide利用由引用注释引导的监督表示,使用基于注意力的机制将查询片映射到共享嵌入空间。然后,它通过结合学习表征中最近邻居的信息来分配点级标签。使用人类背外侧前额叶皮层和乳腺癌数据集,stGuide通过以下方式展示了它的能力:(i)生成分类引导的低维特征和混合良好的切片;(ii)在异质组织间有效转移标签;(三)揭示集群之间的关系。与最先进的方法进行比较表明,stGuide始终优于现有的方法,将其定位为空间转录组学分析的强大和通用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
stGuide advances label transfer in spatial transcriptomics through attention-based supervised graph representation learning.

The growing availability of spatial transcriptomics data offers key resources for annotating query datasets using reference datasets. However, batch effects, unbalanced reference annotations, and tissue heterogeneity pose significant challenges to alignment analysis. Here, we present stGuide, an attention-based supervised graph learning model designed for cross-slice alignment and efficient label transfer from reference to query datasets. stGuide leverages supervised representations guided by reference annotations to map query slices into a shared embedding space using an attention-based mechanism. It then assigns spot-level labels by incorporating information from the nearest neighbors in the learned representation. Using human dorsolateral prefrontal cortex and breast cancer datasets, stGuide demonstrates its capabilities by (i) producing category-guided, low-dimensional features with well-mixed slices; (ii) transferring labels effectively across heterogeneous tissues; and (iii) uncovering relationships between clusters. Comparisons with state-of-the-art methods demonstrate that stGuide consistently outperforms existing approaches, positioning it as a robust and versatile tool for spatial transcriptomics analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Genetics
Frontiers in Genetics Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍: Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public. The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信