电化学条件下MXene的CO2活化加氢机理研究。

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Yue Xu, Dongyue Gao, Ying Li, Zhe Liu, Yadong Yu, Yi Fang, Yang Huang, Chengchun Tang, Zhonglu Guo
{"title":"电化学条件下MXene的CO2活化加氢机理研究。","authors":"Yue Xu, Dongyue Gao, Ying Li, Zhe Liu, Yadong Yu, Yi Fang, Yang Huang, Chengchun Tang, Zhonglu Guo","doi":"10.1002/cphc.202500101","DOIUrl":null,"url":null,"abstract":"<p><p>MXenes are attracting growing interest as promising catalysts for CO2 reduction reactions. However, the specific activation and reduction mechanism of CO2 on MXenes under realistic electrochemical conditions remains unclear. In this study, we utilize ab initio molecular dynamics simulations to unravel the kinetic processes of underlying CO2 activation and hydrogenation under aqueous conditions with Mo2C MXene as a prototype. Our findings reveal that the presence of water molecules significantly enhances the charge transfer of CO2, facilitating its activation on MXene. Notably, we highlight an insight that the initial hydrogenation of *CO2 on MXene prefers to occur on oxygen rather than carbon, favoring the formation of *HOCO over *OCHO. We proposed that the introduction of alkali metal cations including Li+, Na+, and Cs+ can stabilize the adsorption of CO2 and reaction intermediates on MXene via altering the interfacial water structure and hydrogen bonding network, and thus effectively inhibiting the competitive hydrogen evolution reaction (HER). Further dynamic vibrational spectra simulations shed light on the interaction between alkaline metal cations and adsorbed CO2 molecules, which will provide a theoretical basis for the in-situ detection of reactants. Our work provides a deeper insight into the dynamic solid-liquid interface at the atomic level.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202500101"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the CO2 Activation and Hydrogenation Mechanism on MXene under Electrochemical Conditions.\",\"authors\":\"Yue Xu, Dongyue Gao, Ying Li, Zhe Liu, Yadong Yu, Yi Fang, Yang Huang, Chengchun Tang, Zhonglu Guo\",\"doi\":\"10.1002/cphc.202500101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MXenes are attracting growing interest as promising catalysts for CO2 reduction reactions. However, the specific activation and reduction mechanism of CO2 on MXenes under realistic electrochemical conditions remains unclear. In this study, we utilize ab initio molecular dynamics simulations to unravel the kinetic processes of underlying CO2 activation and hydrogenation under aqueous conditions with Mo2C MXene as a prototype. Our findings reveal that the presence of water molecules significantly enhances the charge transfer of CO2, facilitating its activation on MXene. Notably, we highlight an insight that the initial hydrogenation of *CO2 on MXene prefers to occur on oxygen rather than carbon, favoring the formation of *HOCO over *OCHO. We proposed that the introduction of alkali metal cations including Li+, Na+, and Cs+ can stabilize the adsorption of CO2 and reaction intermediates on MXene via altering the interfacial water structure and hydrogen bonding network, and thus effectively inhibiting the competitive hydrogen evolution reaction (HER). Further dynamic vibrational spectra simulations shed light on the interaction between alkaline metal cations and adsorbed CO2 molecules, which will provide a theoretical basis for the in-situ detection of reactants. Our work provides a deeper insight into the dynamic solid-liquid interface at the atomic level.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202500101\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202500101\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202500101","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

MXenes作为CO2还原反应的催化剂正引起越来越多的兴趣。然而,在实际的电化学条件下,CO2在MXenes上的具体活化和还原机制尚不清楚。在本研究中,我们以Mo2C MXene为原型,利用从头算分子动力学模拟揭示了水中条件下CO2活化和氢化的动力学过程。我们的研究结果表明,水分子的存在显著增强了CO2的电荷转移,促进了其在MXene上的活化。值得注意的是,我们强调了一个见解,即*CO2在MXene上的初始氢化倾向于发生在氧上而不是碳上,这有利于形成*HOCO而不是*OCHO。我们提出引入Li+、Na+和Cs+等碱金属阳离子可以通过改变界面水结构和氢键网络来稳定CO2和反应中间体在MXene上的吸附,从而有效抑制竞争性析氢反应(HER)。进一步的动态振动谱模拟揭示了碱性金属阳离子与吸附CO2分子之间的相互作用,为原位检测反应物提供理论依据。我们的工作在原子水平上对动态固液界面提供了更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the CO2 Activation and Hydrogenation Mechanism on MXene under Electrochemical Conditions.

MXenes are attracting growing interest as promising catalysts for CO2 reduction reactions. However, the specific activation and reduction mechanism of CO2 on MXenes under realistic electrochemical conditions remains unclear. In this study, we utilize ab initio molecular dynamics simulations to unravel the kinetic processes of underlying CO2 activation and hydrogenation under aqueous conditions with Mo2C MXene as a prototype. Our findings reveal that the presence of water molecules significantly enhances the charge transfer of CO2, facilitating its activation on MXene. Notably, we highlight an insight that the initial hydrogenation of *CO2 on MXene prefers to occur on oxygen rather than carbon, favoring the formation of *HOCO over *OCHO. We proposed that the introduction of alkali metal cations including Li+, Na+, and Cs+ can stabilize the adsorption of CO2 and reaction intermediates on MXene via altering the interfacial water structure and hydrogen bonding network, and thus effectively inhibiting the competitive hydrogen evolution reaction (HER). Further dynamic vibrational spectra simulations shed light on the interaction between alkaline metal cations and adsorbed CO2 molecules, which will provide a theoretical basis for the in-situ detection of reactants. Our work provides a deeper insight into the dynamic solid-liquid interface at the atomic level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信