肯尼亚西部冈比亚按蚊对氟氯菊酯行为敏感性降低的分子标记。

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Stephen Okeyo, Dieunel Derilus, Lucy Mackenzie Impoinvil, Nsa Dada, Diana Omoke, Helga Saizonou, Cynthia Awuor Odhiambo, Nicola Mulder, Gerald Juma, Benard W Kulohoma, John E Gimnig, Luc S Djogbénou, Audrey Lenhart, Eric Ochomo
{"title":"肯尼亚西部冈比亚按蚊对氟氯菊酯行为敏感性降低的分子标记。","authors":"Stephen Okeyo, Dieunel Derilus, Lucy Mackenzie Impoinvil, Nsa Dada, Diana Omoke, Helga Saizonou, Cynthia Awuor Odhiambo, Nicola Mulder, Gerald Juma, Benard W Kulohoma, John E Gimnig, Luc S Djogbénou, Audrey Lenhart, Eric Ochomo","doi":"10.1186/s12864-025-11755-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The emergence and spread of insecticide resistance in malaria vectors threatens vector control efforts. The use of spatial repellent products (SR) containing volatile insecticides such as transfluthrin offer a promising complementary strategy to current vector control tools. Here, we employed whole transcriptome analysis to investigate the molecular mechanisms underlying reduced behavioral sensitivity to transfluthrin in two pyrethroid-resistant populations of Anopheles gambiae s.s. Using a high-throughput screening system (HITSS), we evaluated 600 mosquitoes across three populations (Bungoma field population, the insecticide-resistant Pimperena lab strain, and the susceptible Kisumu lab strain), categorizing them as responders or non-responders based on their SR avoidance behavior. Non-responders exhibited significantly reduced repellency (spatial activity index < 0.1) at standard transfluthrin concentrations (0.0025 μg/ml).</p><p><strong>Results: </strong>RNA sequencing of pooled samples (n = 10 mosquitoes per pool, three replicates per condition) revealed distinct transcriptional profiles between responders and non-responders. The cytochrome P450 gene CYP12F12 showed significant overexpression (FC = 36.6389, p < 0.001) in Bungoma non-responders, suggesting its potential role in transfluthrin metabolism. Additionally, we observed population-specific distributions of voltage-gated sodium channel mutations, with fixation of kdr L995F in Pimperena non-responders and elevated frequency (80-100%) of kdr L995S in Bungoma non-responders.</p><p><strong>Conclusions: </strong>These findings provide the first molecular evidence linking both metabolic and target-site mechanisms to reduced behavioral sensitivity to transfluthrin in malaria vectors. The co-occurrence of CYP12F12 overexpression and kdr mutations suggests multiple resistance mechanisms may affect spatial repellent efficacy, highlighting the need for resistance monitoring in spatial repellent deployment strategies.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"565"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12142849/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular markers of reduced behavioral sensitivity to transfluthrin in Anopheles gambiae s.s. from Western Kenya.\",\"authors\":\"Stephen Okeyo, Dieunel Derilus, Lucy Mackenzie Impoinvil, Nsa Dada, Diana Omoke, Helga Saizonou, Cynthia Awuor Odhiambo, Nicola Mulder, Gerald Juma, Benard W Kulohoma, John E Gimnig, Luc S Djogbénou, Audrey Lenhart, Eric Ochomo\",\"doi\":\"10.1186/s12864-025-11755-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The emergence and spread of insecticide resistance in malaria vectors threatens vector control efforts. The use of spatial repellent products (SR) containing volatile insecticides such as transfluthrin offer a promising complementary strategy to current vector control tools. Here, we employed whole transcriptome analysis to investigate the molecular mechanisms underlying reduced behavioral sensitivity to transfluthrin in two pyrethroid-resistant populations of Anopheles gambiae s.s. Using a high-throughput screening system (HITSS), we evaluated 600 mosquitoes across three populations (Bungoma field population, the insecticide-resistant Pimperena lab strain, and the susceptible Kisumu lab strain), categorizing them as responders or non-responders based on their SR avoidance behavior. Non-responders exhibited significantly reduced repellency (spatial activity index < 0.1) at standard transfluthrin concentrations (0.0025 μg/ml).</p><p><strong>Results: </strong>RNA sequencing of pooled samples (n = 10 mosquitoes per pool, three replicates per condition) revealed distinct transcriptional profiles between responders and non-responders. The cytochrome P450 gene CYP12F12 showed significant overexpression (FC = 36.6389, p < 0.001) in Bungoma non-responders, suggesting its potential role in transfluthrin metabolism. Additionally, we observed population-specific distributions of voltage-gated sodium channel mutations, with fixation of kdr L995F in Pimperena non-responders and elevated frequency (80-100%) of kdr L995S in Bungoma non-responders.</p><p><strong>Conclusions: </strong>These findings provide the first molecular evidence linking both metabolic and target-site mechanisms to reduced behavioral sensitivity to transfluthrin in malaria vectors. The co-occurrence of CYP12F12 overexpression and kdr mutations suggests multiple resistance mechanisms may affect spatial repellent efficacy, highlighting the need for resistance monitoring in spatial repellent deployment strategies.</p>\",\"PeriodicalId\":9030,\"journal\":{\"name\":\"BMC Genomics\",\"volume\":\"26 1\",\"pages\":\"565\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12142849/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12864-025-11755-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11755-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:疟疾病媒中杀虫剂耐药性的出现和传播对病媒控制工作构成威胁。使用含有挥发性杀虫剂(如跨氟菊酯)的空间驱避产品是对现有病媒控制工具的一种有希望的补充策略。本研究采用全转录组分析方法研究了冈比亚按蚊(Anopheles gambiae s.s) 2个拟除虫菊酯类杀虫剂抗性种群对跨氟菊酯行为敏感性降低的分子机制。采用高通量筛选系统(HITSS)对3个种群(Bungoma野外种群、Pimperena实验室抗性种群和Kisumu实验室敏感种群)的600只蚊子进行了评估。根据他们的SR回避行为将他们分为反应者和非反应者。结果:对混合样本(每池10只蚊子,每种条件3个重复)的RNA测序显示,反应者和无反应者之间的转录谱存在明显差异。细胞色素P450基因CYP12F12显著过表达(FC = 36.6389, p)。结论:这些发现首次提供了将代谢和靶点机制与降低疟疾媒介对氟氯菊酯的行为敏感性联系起来的分子证据。CYP12F12过表达和kdr突变的共同出现表明多种抗性机制可能影响空间驱避效果,强调了在空间驱避部署策略中进行抗性监测的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular markers of reduced behavioral sensitivity to transfluthrin in Anopheles gambiae s.s. from Western Kenya.

Background: The emergence and spread of insecticide resistance in malaria vectors threatens vector control efforts. The use of spatial repellent products (SR) containing volatile insecticides such as transfluthrin offer a promising complementary strategy to current vector control tools. Here, we employed whole transcriptome analysis to investigate the molecular mechanisms underlying reduced behavioral sensitivity to transfluthrin in two pyrethroid-resistant populations of Anopheles gambiae s.s. Using a high-throughput screening system (HITSS), we evaluated 600 mosquitoes across three populations (Bungoma field population, the insecticide-resistant Pimperena lab strain, and the susceptible Kisumu lab strain), categorizing them as responders or non-responders based on their SR avoidance behavior. Non-responders exhibited significantly reduced repellency (spatial activity index < 0.1) at standard transfluthrin concentrations (0.0025 μg/ml).

Results: RNA sequencing of pooled samples (n = 10 mosquitoes per pool, three replicates per condition) revealed distinct transcriptional profiles between responders and non-responders. The cytochrome P450 gene CYP12F12 showed significant overexpression (FC = 36.6389, p < 0.001) in Bungoma non-responders, suggesting its potential role in transfluthrin metabolism. Additionally, we observed population-specific distributions of voltage-gated sodium channel mutations, with fixation of kdr L995F in Pimperena non-responders and elevated frequency (80-100%) of kdr L995S in Bungoma non-responders.

Conclusions: These findings provide the first molecular evidence linking both metabolic and target-site mechanisms to reduced behavioral sensitivity to transfluthrin in malaria vectors. The co-occurrence of CYP12F12 overexpression and kdr mutations suggests multiple resistance mechanisms may affect spatial repellent efficacy, highlighting the need for resistance monitoring in spatial repellent deployment strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信