{"title":"MMP基因的分子适应支持鲸类动物的肺弹性和潜水适应。","authors":"Ya Zhang, Wenjun Lv, Wen Yan, Boxiong Guo, Guang Yang, Wenhua Ren","doi":"10.1186/s12864-025-11751-2","DOIUrl":null,"url":null,"abstract":"<p><p>Cetaceans are a unique group of marine mammals that have evolved from terrestrial to fully aquatic life. During diving, they experience extreme physiological challenges, including lung collapse, limited gas exchange, and the risk of decompression-related injuries. The matrix metalloproteinase (MMP) gene family plays a central role in extracellular matrix (ECM) remodeling, vascular repair, and inflammatory responses, and is also involved in the formation and maintenance of elastic fibers-key components that contribute to lung elasticity. Enhanced lung elasticity is thought to facilitate reversible lung collapse and efficient blood shift during dives, ultimately reducing nitrogen uptake and the potential risk of decompression sickness (DCS). In this study, we analyzed 1,058 genes from 46 species, focusing on cetaceans and other diving marine mammals, with terrestrial mammals as a reference group. Our results reveal that the MMP gene family has undergone positive selection in cetaceans, with nine genes exhibiting accelerated evolution. Notably, we identified a cetacean-specific N319S mutation in the Fibronectin type-II domain of MMP9, which impairs collagen-binding and degradation, as confirmed by Western blot analysis. Mass spectrometry further revealed an increased number of post-translational modifications in cetacean MMP9 compared to terrestrial mammals, with several modifications overlapping the mutation sites. These findings suggest that adaptive changes in MMPs may enhance elastic fiber dynamics and vascular remodeling in cetaceans, contributing to physiological adaptations such as improved lung compliance and resilience to diving-related stress, including reduced susceptibility to DCS.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"562"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143041/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular adaptations in MMP genes support lung elasticity and diving adaptations in cetaceans.\",\"authors\":\"Ya Zhang, Wenjun Lv, Wen Yan, Boxiong Guo, Guang Yang, Wenhua Ren\",\"doi\":\"10.1186/s12864-025-11751-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cetaceans are a unique group of marine mammals that have evolved from terrestrial to fully aquatic life. During diving, they experience extreme physiological challenges, including lung collapse, limited gas exchange, and the risk of decompression-related injuries. The matrix metalloproteinase (MMP) gene family plays a central role in extracellular matrix (ECM) remodeling, vascular repair, and inflammatory responses, and is also involved in the formation and maintenance of elastic fibers-key components that contribute to lung elasticity. Enhanced lung elasticity is thought to facilitate reversible lung collapse and efficient blood shift during dives, ultimately reducing nitrogen uptake and the potential risk of decompression sickness (DCS). In this study, we analyzed 1,058 genes from 46 species, focusing on cetaceans and other diving marine mammals, with terrestrial mammals as a reference group. Our results reveal that the MMP gene family has undergone positive selection in cetaceans, with nine genes exhibiting accelerated evolution. Notably, we identified a cetacean-specific N319S mutation in the Fibronectin type-II domain of MMP9, which impairs collagen-binding and degradation, as confirmed by Western blot analysis. Mass spectrometry further revealed an increased number of post-translational modifications in cetacean MMP9 compared to terrestrial mammals, with several modifications overlapping the mutation sites. These findings suggest that adaptive changes in MMPs may enhance elastic fiber dynamics and vascular remodeling in cetaceans, contributing to physiological adaptations such as improved lung compliance and resilience to diving-related stress, including reduced susceptibility to DCS.</p>\",\"PeriodicalId\":9030,\"journal\":{\"name\":\"BMC Genomics\",\"volume\":\"26 1\",\"pages\":\"562\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143041/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12864-025-11751-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11751-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Molecular adaptations in MMP genes support lung elasticity and diving adaptations in cetaceans.
Cetaceans are a unique group of marine mammals that have evolved from terrestrial to fully aquatic life. During diving, they experience extreme physiological challenges, including lung collapse, limited gas exchange, and the risk of decompression-related injuries. The matrix metalloproteinase (MMP) gene family plays a central role in extracellular matrix (ECM) remodeling, vascular repair, and inflammatory responses, and is also involved in the formation and maintenance of elastic fibers-key components that contribute to lung elasticity. Enhanced lung elasticity is thought to facilitate reversible lung collapse and efficient blood shift during dives, ultimately reducing nitrogen uptake and the potential risk of decompression sickness (DCS). In this study, we analyzed 1,058 genes from 46 species, focusing on cetaceans and other diving marine mammals, with terrestrial mammals as a reference group. Our results reveal that the MMP gene family has undergone positive selection in cetaceans, with nine genes exhibiting accelerated evolution. Notably, we identified a cetacean-specific N319S mutation in the Fibronectin type-II domain of MMP9, which impairs collagen-binding and degradation, as confirmed by Western blot analysis. Mass spectrometry further revealed an increased number of post-translational modifications in cetacean MMP9 compared to terrestrial mammals, with several modifications overlapping the mutation sites. These findings suggest that adaptive changes in MMPs may enhance elastic fiber dynamics and vascular remodeling in cetaceans, contributing to physiological adaptations such as improved lung compliance and resilience to diving-related stress, including reduced susceptibility to DCS.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.