Dan-Yang Liu, Hui Shen, Jonathan Greenbaum, Qiao-Rong Yi, Shuang Liang, Yue Zhang, Jia-Chen Liu, Chuan Qiu, Lan-Juan Zhao, Qing Tian, Kuan-Jui Su, Zhe Luo, Li Wu, Xiang-He Meng, Hong-Mei Xiao, Yun Deng, Yang Li, Dragana Lovre, Vivian Fonseca, Fernando L Sanchez, Li-Jun Tan, Hong-Wen Deng
{"title":"重新利用乙酰布洛尔治疗骨质疏松症:来自多组学和多模式数据分析的见解。","authors":"Dan-Yang Liu, Hui Shen, Jonathan Greenbaum, Qiao-Rong Yi, Shuang Liang, Yue Zhang, Jia-Chen Liu, Chuan Qiu, Lan-Juan Zhao, Qing Tian, Kuan-Jui Su, Zhe Luo, Li Wu, Xiang-He Meng, Hong-Mei Xiao, Yun Deng, Yang Li, Dragana Lovre, Vivian Fonseca, Fernando L Sanchez, Li-Jun Tan, Hong-Wen Deng","doi":"10.1002/cpt.3738","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoporosis is a common metabolic bone disease with aging, characterized by low bone mineral density (BMD) and higher fragility fracture risk. Although current pharmacological interventions provide therapeutic benefits, long-term use is limited by side effects and comorbidities. In this study, we employed driver signaling network identification (DSNI) and drug functional networks (DFN) to identify repurposable drugs from the Library of Integrated Network-Based Cellular Signatures. We constructed osteoporosis driver signaling networks (ODSN) using multi-omics data and developed DFN based on drug similarity. By integrating ODSN and DFN with drug-induced transcriptional responses, we screened 10,158 compounds and identified several drugs with strong targeting effects on ODSN. Mendelian randomization assessed potential causal links between cis-eQTLs of drug targets and BMD using genome-wide association study data. Our findings indicate four drugs, including Ruxolitinib, Alfacalcidol, and Doxercalciferol, may exert anti-osteoporosis effects. Notably, Acebutolol, a β-blocker for hypertension, has not previously been implicated in osteoporosis therapy. For validation, zebrafish osteoporosis models were established using Dexamethasone-induced bone loss, followed by treatment with Acebutolol hydrochloride and Alfacalcidol. Both compounds demonstrated significant protective effects against osteoporosis-related bone deterioration. Furthermore, a population-based data set, utilizing propensity score matching and analyzed via a generalized linear model, revealed that individuals taking β-blocker drugs exhibited significantly higher BMD than users of other cardiovascular medications. In summary, this study integrates multi-omics approaches, experimental validation, and real-world population data to propose acebutolol as a novel candidate for osteoporosis treatment. These findings warrant further mechanistic studies and clinical trials to evaluate its efficacy in osteoporosis management.</p>","PeriodicalId":153,"journal":{"name":"Clinical Pharmacology & Therapeutics","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repurposing Acebutolol for Osteoporosis Treatment: Insights From Multi-Omics and Multi-Modal Data Analysis.\",\"authors\":\"Dan-Yang Liu, Hui Shen, Jonathan Greenbaum, Qiao-Rong Yi, Shuang Liang, Yue Zhang, Jia-Chen Liu, Chuan Qiu, Lan-Juan Zhao, Qing Tian, Kuan-Jui Su, Zhe Luo, Li Wu, Xiang-He Meng, Hong-Mei Xiao, Yun Deng, Yang Li, Dragana Lovre, Vivian Fonseca, Fernando L Sanchez, Li-Jun Tan, Hong-Wen Deng\",\"doi\":\"10.1002/cpt.3738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoporosis is a common metabolic bone disease with aging, characterized by low bone mineral density (BMD) and higher fragility fracture risk. Although current pharmacological interventions provide therapeutic benefits, long-term use is limited by side effects and comorbidities. In this study, we employed driver signaling network identification (DSNI) and drug functional networks (DFN) to identify repurposable drugs from the Library of Integrated Network-Based Cellular Signatures. We constructed osteoporosis driver signaling networks (ODSN) using multi-omics data and developed DFN based on drug similarity. By integrating ODSN and DFN with drug-induced transcriptional responses, we screened 10,158 compounds and identified several drugs with strong targeting effects on ODSN. Mendelian randomization assessed potential causal links between cis-eQTLs of drug targets and BMD using genome-wide association study data. Our findings indicate four drugs, including Ruxolitinib, Alfacalcidol, and Doxercalciferol, may exert anti-osteoporosis effects. Notably, Acebutolol, a β-blocker for hypertension, has not previously been implicated in osteoporosis therapy. For validation, zebrafish osteoporosis models were established using Dexamethasone-induced bone loss, followed by treatment with Acebutolol hydrochloride and Alfacalcidol. Both compounds demonstrated significant protective effects against osteoporosis-related bone deterioration. Furthermore, a population-based data set, utilizing propensity score matching and analyzed via a generalized linear model, revealed that individuals taking β-blocker drugs exhibited significantly higher BMD than users of other cardiovascular medications. In summary, this study integrates multi-omics approaches, experimental validation, and real-world population data to propose acebutolol as a novel candidate for osteoporosis treatment. These findings warrant further mechanistic studies and clinical trials to evaluate its efficacy in osteoporosis management.</p>\",\"PeriodicalId\":153,\"journal\":{\"name\":\"Clinical Pharmacology & Therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Pharmacology & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cpt.3738\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacology & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cpt.3738","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Repurposing Acebutolol for Osteoporosis Treatment: Insights From Multi-Omics and Multi-Modal Data Analysis.
Osteoporosis is a common metabolic bone disease with aging, characterized by low bone mineral density (BMD) and higher fragility fracture risk. Although current pharmacological interventions provide therapeutic benefits, long-term use is limited by side effects and comorbidities. In this study, we employed driver signaling network identification (DSNI) and drug functional networks (DFN) to identify repurposable drugs from the Library of Integrated Network-Based Cellular Signatures. We constructed osteoporosis driver signaling networks (ODSN) using multi-omics data and developed DFN based on drug similarity. By integrating ODSN and DFN with drug-induced transcriptional responses, we screened 10,158 compounds and identified several drugs with strong targeting effects on ODSN. Mendelian randomization assessed potential causal links between cis-eQTLs of drug targets and BMD using genome-wide association study data. Our findings indicate four drugs, including Ruxolitinib, Alfacalcidol, and Doxercalciferol, may exert anti-osteoporosis effects. Notably, Acebutolol, a β-blocker for hypertension, has not previously been implicated in osteoporosis therapy. For validation, zebrafish osteoporosis models were established using Dexamethasone-induced bone loss, followed by treatment with Acebutolol hydrochloride and Alfacalcidol. Both compounds demonstrated significant protective effects against osteoporosis-related bone deterioration. Furthermore, a population-based data set, utilizing propensity score matching and analyzed via a generalized linear model, revealed that individuals taking β-blocker drugs exhibited significantly higher BMD than users of other cardiovascular medications. In summary, this study integrates multi-omics approaches, experimental validation, and real-world population data to propose acebutolol as a novel candidate for osteoporosis treatment. These findings warrant further mechanistic studies and clinical trials to evaluate its efficacy in osteoporosis management.
期刊介绍:
Clinical Pharmacology & Therapeutics (CPT) is the authoritative cross-disciplinary journal in experimental and clinical medicine devoted to publishing advances in the nature, action, efficacy, and evaluation of therapeutics. CPT welcomes original Articles in the emerging areas of translational, predictive and personalized medicine; new therapeutic modalities including gene and cell therapies; pharmacogenomics, proteomics and metabolomics; bioinformation and applied systems biology complementing areas of pharmacokinetics and pharmacodynamics, human investigation and clinical trials, pharmacovigilence, pharmacoepidemiology, pharmacometrics, and population pharmacology.