Eloise J Stephenson, Laura J Bailey, Stephen Gentleman, Helen Tuppen, Istvan Bodi, Claire Troakes, Christopher M Morris, Tony M Carr, Sarah Guthrie, Joanna L Elson, Ilse S Pienaar
{"title":"类型特异性单个神经元分析揭示线粒体DNA维持故障对路易体痴呆综合征脑桥神经元萎缩的影响差异","authors":"Eloise J Stephenson, Laura J Bailey, Stephen Gentleman, Helen Tuppen, Istvan Bodi, Claire Troakes, Christopher M Morris, Tony M Carr, Sarah Guthrie, Joanna L Elson, Ilse S Pienaar","doi":"10.1111/acel.70125","DOIUrl":null,"url":null,"abstract":"<p><p>The age-associated neurodegenerative disorder, Lewy body dementia (LBD), encompasses neuropsychiatric symptom-overlapping Dementia with Lewy bodies (DLB) and Parkinson's Disease with Dementia (PDD). We characterised how differential mitochondrial DNA (mtDNA) profiles contribute to neurotype-specific neurodegeneration and thereby clinicopathological heterogeneity, between LBD's syndromes. We further characterised key nuclear-encoding genes' recalibrations in response to such mtDNA changes. In post-mortem 'single-cell' acetylcholine- and noradrenaline-producing neurons, respectively of the pedunculopontine nucleus (PPN) and locus coeruleus (LC) from DLB, PDD and neurological-control brains, we quantified 'major arc'-locating mtDNA deletions (mtDels) and -copy number (mtCN), and measured mRNA levels of nuclear-encoding genes regulating mtDNA maintenance, -biogenesis and mitophagy. DLB cases' OXPHOS defect instigating mtDel burden was higher in both neurotypes than PDD. In DLB, mtCN was reduced for both neurotypes, but PDD cases revealed mtDNA depletion in LC-noradrenergic neurons only. DLB patients' shorter survival correlated with PPN-cholinergic neurons' mtDel levels, inversely with wild-type mtCN, implying that such neurons' inability to maintain sufficient wild-type mtDNA content drive DLBs' rapid psycho-cognitive manifestations. Contrastingly, PDD's longer disease duration allowed compensation against mtDels' clonal expansion in PPN-cholinergic neurons. Moreover, PDD induced mRNA depletion of a mitochondrial genome maintenance gene in PPN-cholinergic neurons, whilst LC-noradrenergic neurons displayed reduced expression of a mitophagy regulating gene. Here we identify mitochondrial genome maintenance and mitophagy pathway enrichment as therapeutic targets to offset defective mtDNA within pontine cholinergic and noradrenergic neurons of PDD patients. The pronounced LBD subtype-related mitochondria-nuclear genetic differences question the consensus that pathology converges at disease end-stage, calling for LBD subtype and neurotype-specific therapeutics.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70125"},"PeriodicalIF":8.0000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Type-Specific Single-Neuron Analysis Reveals Mitochondrial DNA Maintenance Failure Affecting Atrophying Pontine Neurons Differentially in Lewy Body Dementia Syndromes.\",\"authors\":\"Eloise J Stephenson, Laura J Bailey, Stephen Gentleman, Helen Tuppen, Istvan Bodi, Claire Troakes, Christopher M Morris, Tony M Carr, Sarah Guthrie, Joanna L Elson, Ilse S Pienaar\",\"doi\":\"10.1111/acel.70125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The age-associated neurodegenerative disorder, Lewy body dementia (LBD), encompasses neuropsychiatric symptom-overlapping Dementia with Lewy bodies (DLB) and Parkinson's Disease with Dementia (PDD). We characterised how differential mitochondrial DNA (mtDNA) profiles contribute to neurotype-specific neurodegeneration and thereby clinicopathological heterogeneity, between LBD's syndromes. We further characterised key nuclear-encoding genes' recalibrations in response to such mtDNA changes. In post-mortem 'single-cell' acetylcholine- and noradrenaline-producing neurons, respectively of the pedunculopontine nucleus (PPN) and locus coeruleus (LC) from DLB, PDD and neurological-control brains, we quantified 'major arc'-locating mtDNA deletions (mtDels) and -copy number (mtCN), and measured mRNA levels of nuclear-encoding genes regulating mtDNA maintenance, -biogenesis and mitophagy. DLB cases' OXPHOS defect instigating mtDel burden was higher in both neurotypes than PDD. In DLB, mtCN was reduced for both neurotypes, but PDD cases revealed mtDNA depletion in LC-noradrenergic neurons only. DLB patients' shorter survival correlated with PPN-cholinergic neurons' mtDel levels, inversely with wild-type mtCN, implying that such neurons' inability to maintain sufficient wild-type mtDNA content drive DLBs' rapid psycho-cognitive manifestations. Contrastingly, PDD's longer disease duration allowed compensation against mtDels' clonal expansion in PPN-cholinergic neurons. Moreover, PDD induced mRNA depletion of a mitochondrial genome maintenance gene in PPN-cholinergic neurons, whilst LC-noradrenergic neurons displayed reduced expression of a mitophagy regulating gene. Here we identify mitochondrial genome maintenance and mitophagy pathway enrichment as therapeutic targets to offset defective mtDNA within pontine cholinergic and noradrenergic neurons of PDD patients. The pronounced LBD subtype-related mitochondria-nuclear genetic differences question the consensus that pathology converges at disease end-stage, calling for LBD subtype and neurotype-specific therapeutics.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e70125\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.70125\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70125","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Type-Specific Single-Neuron Analysis Reveals Mitochondrial DNA Maintenance Failure Affecting Atrophying Pontine Neurons Differentially in Lewy Body Dementia Syndromes.
The age-associated neurodegenerative disorder, Lewy body dementia (LBD), encompasses neuropsychiatric symptom-overlapping Dementia with Lewy bodies (DLB) and Parkinson's Disease with Dementia (PDD). We characterised how differential mitochondrial DNA (mtDNA) profiles contribute to neurotype-specific neurodegeneration and thereby clinicopathological heterogeneity, between LBD's syndromes. We further characterised key nuclear-encoding genes' recalibrations in response to such mtDNA changes. In post-mortem 'single-cell' acetylcholine- and noradrenaline-producing neurons, respectively of the pedunculopontine nucleus (PPN) and locus coeruleus (LC) from DLB, PDD and neurological-control brains, we quantified 'major arc'-locating mtDNA deletions (mtDels) and -copy number (mtCN), and measured mRNA levels of nuclear-encoding genes regulating mtDNA maintenance, -biogenesis and mitophagy. DLB cases' OXPHOS defect instigating mtDel burden was higher in both neurotypes than PDD. In DLB, mtCN was reduced for both neurotypes, but PDD cases revealed mtDNA depletion in LC-noradrenergic neurons only. DLB patients' shorter survival correlated with PPN-cholinergic neurons' mtDel levels, inversely with wild-type mtCN, implying that such neurons' inability to maintain sufficient wild-type mtDNA content drive DLBs' rapid psycho-cognitive manifestations. Contrastingly, PDD's longer disease duration allowed compensation against mtDels' clonal expansion in PPN-cholinergic neurons. Moreover, PDD induced mRNA depletion of a mitochondrial genome maintenance gene in PPN-cholinergic neurons, whilst LC-noradrenergic neurons displayed reduced expression of a mitophagy regulating gene. Here we identify mitochondrial genome maintenance and mitophagy pathway enrichment as therapeutic targets to offset defective mtDNA within pontine cholinergic and noradrenergic neurons of PDD patients. The pronounced LBD subtype-related mitochondria-nuclear genetic differences question the consensus that pathology converges at disease end-stage, calling for LBD subtype and neurotype-specific therapeutics.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.