{"title":"MTGNN:基于多模态异构图神经网络和方向感知元路径的药物-靶标-疾病三重关联预测模型","authors":"Lidan Zheng, Simeng Zhang, Yihao Li, Yang Liu, Qian Ge, Lingxi Gu, Yu Xie, Xiao Wang, Yunfei Ma, Junfei Liu, Mengyi Lu, Yadong Chen, Yong Zhu, Haichun Liu","doi":"10.1021/acs.jcim.5c00817","DOIUrl":null,"url":null,"abstract":"<p><p>The forecasting of drug-target interactions (DTIs) is a crucial element in the domain of drug repositioning. Current methodologies, primarily based on dual-branch architectures or graph neural networks (GNNs), typically model binary associations─specifically drug-target or target-disease relationships─thereby overlooking the directional dependencies and synergistic mechanisms intrinsic to tripartite drug-target-disease (GTD) interactions. To address this disparity, we present MTGNN (Multimodal Transformer Graph Neural Network), a comprehensive prediction framework designed to model GTD triplets directly. MTGNN specifically constructs a heterogeneous graph that incorporates direction-aware metapaths to capture biologically significant directional dependencies (e.g., drug → target → disease) and utilizes a dual-path Transformer architecture to integrate both the topological structure and semantic features of biomedical entities (drugs, targets, and diseases). A cross-attention technique is also implemented to dynamically align graph-based and modality-specific semantic representations, promoting improved cross-modal interaction. Comprehensive tests performed validate the effectiveness of MTGNN in precisely inferring GTD connections, exhibiting enhanced performance and generalization capacities. These findings highlight the efficacy of MTGNN as a formidable computational instrument for medication repositioning.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"5921-5933"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MTGNN: A Drug-Target-Disease Triplet Association Prediction Model Based on Multimodal Heterogeneous Graph Neural Networks and Direction-Aware Metapaths.\",\"authors\":\"Lidan Zheng, Simeng Zhang, Yihao Li, Yang Liu, Qian Ge, Lingxi Gu, Yu Xie, Xiao Wang, Yunfei Ma, Junfei Liu, Mengyi Lu, Yadong Chen, Yong Zhu, Haichun Liu\",\"doi\":\"10.1021/acs.jcim.5c00817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The forecasting of drug-target interactions (DTIs) is a crucial element in the domain of drug repositioning. Current methodologies, primarily based on dual-branch architectures or graph neural networks (GNNs), typically model binary associations─specifically drug-target or target-disease relationships─thereby overlooking the directional dependencies and synergistic mechanisms intrinsic to tripartite drug-target-disease (GTD) interactions. To address this disparity, we present MTGNN (Multimodal Transformer Graph Neural Network), a comprehensive prediction framework designed to model GTD triplets directly. MTGNN specifically constructs a heterogeneous graph that incorporates direction-aware metapaths to capture biologically significant directional dependencies (e.g., drug → target → disease) and utilizes a dual-path Transformer architecture to integrate both the topological structure and semantic features of biomedical entities (drugs, targets, and diseases). A cross-attention technique is also implemented to dynamically align graph-based and modality-specific semantic representations, promoting improved cross-modal interaction. Comprehensive tests performed validate the effectiveness of MTGNN in precisely inferring GTD connections, exhibiting enhanced performance and generalization capacities. These findings highlight the efficacy of MTGNN as a formidable computational instrument for medication repositioning.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"5921-5933\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.5c00817\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00817","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
MTGNN: A Drug-Target-Disease Triplet Association Prediction Model Based on Multimodal Heterogeneous Graph Neural Networks and Direction-Aware Metapaths.
The forecasting of drug-target interactions (DTIs) is a crucial element in the domain of drug repositioning. Current methodologies, primarily based on dual-branch architectures or graph neural networks (GNNs), typically model binary associations─specifically drug-target or target-disease relationships─thereby overlooking the directional dependencies and synergistic mechanisms intrinsic to tripartite drug-target-disease (GTD) interactions. To address this disparity, we present MTGNN (Multimodal Transformer Graph Neural Network), a comprehensive prediction framework designed to model GTD triplets directly. MTGNN specifically constructs a heterogeneous graph that incorporates direction-aware metapaths to capture biologically significant directional dependencies (e.g., drug → target → disease) and utilizes a dual-path Transformer architecture to integrate both the topological structure and semantic features of biomedical entities (drugs, targets, and diseases). A cross-attention technique is also implemented to dynamically align graph-based and modality-specific semantic representations, promoting improved cross-modal interaction. Comprehensive tests performed validate the effectiveness of MTGNN in precisely inferring GTD connections, exhibiting enhanced performance and generalization capacities. These findings highlight the efficacy of MTGNN as a formidable computational instrument for medication repositioning.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.