Anna Czopek, Jakub Jończyk, Monika Fryc, Daria Kluzik, Agnieszka Zagórska
{"title":"经典致幻剂在疼痛调节中的作用:机制、临床证据和未来展望。","authors":"Anna Czopek, Jakub Jończyk, Monika Fryc, Daria Kluzik, Agnieszka Zagórska","doi":"10.1021/acschemneuro.5c00152","DOIUrl":null,"url":null,"abstract":"<p><p>Millions worldwide suffer from chronic pain, a complex condition often accompanied by depression and anxiety, highlighting the urgent need for innovative treatments. Classic psychedelics, including psilocybin, lysergic acid diethylamide (LSD), and <i>N</i>,<i>N</i>-dimethyltryptamine (DMT), primarily act on serotonin 5-HT<sub>2A</sub> receptors and have emerged as potential modulators of pain perception and mood regulation. These substances may offer an alternative to conventional analgesics, such as opioids and nonsteroidal anti-inflammatory drugs (NSAIDs), by influencing neuroplasticity, descending pain modulation pathways, and inflammatory processes. Evidence from case studies, preclinical research, and early phase clinical trials suggests that psychedelics may alleviate pain in conditions such as cluster headaches, migraines, fibromyalgia, and chronic pain syndromes. However, the exact mechanisms underlying their analgesic properties are yet to be fully understood. While psychedelics show promise in reshaping pain management strategies, rigorous randomized controlled trials are needed to establish their safety, efficacy, and optimal dosing. This review highlights the therapeutic potential of psychedelics for chronic pain and emphasizes the necessity of further research to validate their role in modern pain medicine.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"2163-2177"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183689/pdf/","citationCount":"0","resultStr":"{\"title\":\"Classic Psychedelics in Pain Modulation: Mechanisms, Clinical Evidence, and Future Perspectives.\",\"authors\":\"Anna Czopek, Jakub Jończyk, Monika Fryc, Daria Kluzik, Agnieszka Zagórska\",\"doi\":\"10.1021/acschemneuro.5c00152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Millions worldwide suffer from chronic pain, a complex condition often accompanied by depression and anxiety, highlighting the urgent need for innovative treatments. Classic psychedelics, including psilocybin, lysergic acid diethylamide (LSD), and <i>N</i>,<i>N</i>-dimethyltryptamine (DMT), primarily act on serotonin 5-HT<sub>2A</sub> receptors and have emerged as potential modulators of pain perception and mood regulation. These substances may offer an alternative to conventional analgesics, such as opioids and nonsteroidal anti-inflammatory drugs (NSAIDs), by influencing neuroplasticity, descending pain modulation pathways, and inflammatory processes. Evidence from case studies, preclinical research, and early phase clinical trials suggests that psychedelics may alleviate pain in conditions such as cluster headaches, migraines, fibromyalgia, and chronic pain syndromes. However, the exact mechanisms underlying their analgesic properties are yet to be fully understood. While psychedelics show promise in reshaping pain management strategies, rigorous randomized controlled trials are needed to establish their safety, efficacy, and optimal dosing. This review highlights the therapeutic potential of psychedelics for chronic pain and emphasizes the necessity of further research to validate their role in modern pain medicine.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\" \",\"pages\":\"2163-2177\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183689/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.5c00152\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00152","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Classic Psychedelics in Pain Modulation: Mechanisms, Clinical Evidence, and Future Perspectives.
Millions worldwide suffer from chronic pain, a complex condition often accompanied by depression and anxiety, highlighting the urgent need for innovative treatments. Classic psychedelics, including psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT), primarily act on serotonin 5-HT2A receptors and have emerged as potential modulators of pain perception and mood regulation. These substances may offer an alternative to conventional analgesics, such as opioids and nonsteroidal anti-inflammatory drugs (NSAIDs), by influencing neuroplasticity, descending pain modulation pathways, and inflammatory processes. Evidence from case studies, preclinical research, and early phase clinical trials suggests that psychedelics may alleviate pain in conditions such as cluster headaches, migraines, fibromyalgia, and chronic pain syndromes. However, the exact mechanisms underlying their analgesic properties are yet to be fully understood. While psychedelics show promise in reshaping pain management strategies, rigorous randomized controlled trials are needed to establish their safety, efficacy, and optimal dosing. This review highlights the therapeutic potential of psychedelics for chronic pain and emphasizes the necessity of further research to validate their role in modern pain medicine.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research