CLPFusion:中国写实山水画风格转移的潜在扩散模型框架

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jiahui Pan, Frederick W. B. Li, Bailin Yang, Fangzhe Nan
{"title":"CLPFusion:中国写实山水画风格转移的潜在扩散模型框架","authors":"Jiahui Pan,&nbsp;Frederick W. B. Li,&nbsp;Bailin Yang,&nbsp;Fangzhe Nan","doi":"10.1002/cav.70053","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study focuses on transforming real-world scenery into Chinese landscape painting masterpieces through style transfer. Traditional methods using convolutional neural networks (CNNs) and generative adversarial networks (GANs) often yield inconsistent patterns and artifacts. The rise of diffusion models (DMs) presents new opportunities for realistic image generation, but their inherent noise characteristics make it challenging to synthesize pure white or black images. Consequently, existing DM-based methods struggle to capture the unique style and color information of Chinese landscape paintings. To overcome these limitations, we propose CLPFusion, a novel framework that leverages pre-trained diffusion models for artistic style transfer. A key innovation is the Bidirectional State Space Models-CrossAttention (BiSSM-CA) module, which efficiently learns and retains the distinct styles of Chinese landscape paintings. Additionally, we introduce two latent space feature adjustment methods, Latent-AdaIN and Latent-WCT, to enhance style modulation during inference. Experiments demonstrate that CLPFusion produces more realistic and artistic Chinese landscape paintings than existing approaches, showcasing its effectiveness and uniqueness in the field.</p>\n </div>","PeriodicalId":50645,"journal":{"name":"Computer Animation and Virtual Worlds","volume":"36 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLPFusion: A Latent Diffusion Model Framework for Realistic Chinese Landscape Painting Style Transfer\",\"authors\":\"Jiahui Pan,&nbsp;Frederick W. B. Li,&nbsp;Bailin Yang,&nbsp;Fangzhe Nan\",\"doi\":\"10.1002/cav.70053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study focuses on transforming real-world scenery into Chinese landscape painting masterpieces through style transfer. Traditional methods using convolutional neural networks (CNNs) and generative adversarial networks (GANs) often yield inconsistent patterns and artifacts. The rise of diffusion models (DMs) presents new opportunities for realistic image generation, but their inherent noise characteristics make it challenging to synthesize pure white or black images. Consequently, existing DM-based methods struggle to capture the unique style and color information of Chinese landscape paintings. To overcome these limitations, we propose CLPFusion, a novel framework that leverages pre-trained diffusion models for artistic style transfer. A key innovation is the Bidirectional State Space Models-CrossAttention (BiSSM-CA) module, which efficiently learns and retains the distinct styles of Chinese landscape paintings. Additionally, we introduce two latent space feature adjustment methods, Latent-AdaIN and Latent-WCT, to enhance style modulation during inference. Experiments demonstrate that CLPFusion produces more realistic and artistic Chinese landscape paintings than existing approaches, showcasing its effectiveness and uniqueness in the field.</p>\\n </div>\",\"PeriodicalId\":50645,\"journal\":{\"name\":\"Computer Animation and Virtual Worlds\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Animation and Virtual Worlds\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cav.70053\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Animation and Virtual Worlds","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cav.70053","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是通过风格转换将现实世界的风景转化为中国山水画的杰作。使用卷积神经网络(cnn)和生成对抗网络(gan)的传统方法经常产生不一致的模式和伪影。扩散模型(DMs)的兴起为真实感图像生成提供了新的机会,但其固有的噪声特性使得合成纯白色或纯黑色图像具有挑战性。因此,现有的基于数据的方法很难捕捉到中国山水画独特的风格和色彩信息。为了克服这些限制,我们提出了CLPFusion,这是一个利用预先训练的扩散模型进行艺术风格转移的新框架。一个关键的创新是双向状态空间模型-交叉注意(BiSSM-CA)模块,它有效地学习和保留了中国山水画的独特风格。此外,我们还引入了两种潜在空间特征调整方法,即latent - adain和latent - wct,以增强推理过程中的风格调制。实验表明,CLPFusion比现有的方法产生的中国山水画更真实、更有艺术性,显示了其在该领域的有效性和独特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CLPFusion: A Latent Diffusion Model Framework for Realistic Chinese Landscape Painting Style Transfer

This study focuses on transforming real-world scenery into Chinese landscape painting masterpieces through style transfer. Traditional methods using convolutional neural networks (CNNs) and generative adversarial networks (GANs) often yield inconsistent patterns and artifacts. The rise of diffusion models (DMs) presents new opportunities for realistic image generation, but their inherent noise characteristics make it challenging to synthesize pure white or black images. Consequently, existing DM-based methods struggle to capture the unique style and color information of Chinese landscape paintings. To overcome these limitations, we propose CLPFusion, a novel framework that leverages pre-trained diffusion models for artistic style transfer. A key innovation is the Bidirectional State Space Models-CrossAttention (BiSSM-CA) module, which efficiently learns and retains the distinct styles of Chinese landscape paintings. Additionally, we introduce two latent space feature adjustment methods, Latent-AdaIN and Latent-WCT, to enhance style modulation during inference. Experiments demonstrate that CLPFusion produces more realistic and artistic Chinese landscape paintings than existing approaches, showcasing its effectiveness and uniqueness in the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Animation and Virtual Worlds
Computer Animation and Virtual Worlds 工程技术-计算机:软件工程
CiteScore
2.20
自引率
0.00%
发文量
90
审稿时长
6-12 weeks
期刊介绍: With the advent of very powerful PCs and high-end graphics cards, there has been an incredible development in Virtual Worlds, real-time computer animation and simulation, games. But at the same time, new and cheaper Virtual Reality devices have appeared allowing an interaction with these real-time Virtual Worlds and even with real worlds through Augmented Reality. Three-dimensional characters, especially Virtual Humans are now of an exceptional quality, which allows to use them in the movie industry. But this is only a beginning, as with the development of Artificial Intelligence and Agent technology, these characters will become more and more autonomous and even intelligent. They will inhabit the Virtual Worlds in a Virtual Life together with animals and plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信