基于变压器和注意力增强的脑肿瘤分割架构

Mir Nafiul Nagib;Rahat Pervez;Afsana Alam Nova;Hadiur Rahman Nabil;Zeyar Aung;M. F. Mridha
{"title":"基于变压器和注意力增强的脑肿瘤分割架构","authors":"Mir Nafiul Nagib;Rahat Pervez;Afsana Alam Nova;Hadiur Rahman Nabil;Zeyar Aung;M. F. Mridha","doi":"10.1109/OJCS.2025.3569758","DOIUrl":null,"url":null,"abstract":"Brain tumor segmentation is crucial in medical imaging, allowing informed diagnosis and treatment planning. In this study, we propose TuSegNet, a new transformer-based and attention-enhanced architecture for robust brain tumor segmentation. The model combines convolutional layers with transformer blocks for global context awareness, incorporates Atrous Spatial Pyramid Pooling (ASPP) for multi-scale feature extraction, and employs channel attention mechanisms to concentrate on tumor-relevant parts. Evaluated on three datasets—Dataset A, Dataset B, and a combined dataset—TuSegNet achieves state-of-the-art performance with a Dice Similarity Coefficient (DSC) of 0.895, 0.910, and 0.930, respectively, and an Intersection over Union (IoU) of 0.820, 0.835, and 0.860. Ablation studies validate the importance of ASPP and attention mechanisms, while comparative analysis demonstrates outstanding performance over existing SOTA models such as Swin UNet and TransUNet. The proposed methodology improves segmentation accuracy and highlights the importance of hybrid architectures in handling complex medical imaging tasks. These developments underscore the potential of TuSegNet for real-world healthcare applications in brain tumor diagnosis.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"750-761"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11002687","citationCount":"0","resultStr":"{\"title\":\"TuSegNet: A Transformer-Based and Attention-Enhanced Architecture for Brain Tumor Segmentation\",\"authors\":\"Mir Nafiul Nagib;Rahat Pervez;Afsana Alam Nova;Hadiur Rahman Nabil;Zeyar Aung;M. F. Mridha\",\"doi\":\"10.1109/OJCS.2025.3569758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain tumor segmentation is crucial in medical imaging, allowing informed diagnosis and treatment planning. In this study, we propose TuSegNet, a new transformer-based and attention-enhanced architecture for robust brain tumor segmentation. The model combines convolutional layers with transformer blocks for global context awareness, incorporates Atrous Spatial Pyramid Pooling (ASPP) for multi-scale feature extraction, and employs channel attention mechanisms to concentrate on tumor-relevant parts. Evaluated on three datasets—Dataset A, Dataset B, and a combined dataset—TuSegNet achieves state-of-the-art performance with a Dice Similarity Coefficient (DSC) of 0.895, 0.910, and 0.930, respectively, and an Intersection over Union (IoU) of 0.820, 0.835, and 0.860. Ablation studies validate the importance of ASPP and attention mechanisms, while comparative analysis demonstrates outstanding performance over existing SOTA models such as Swin UNet and TransUNet. The proposed methodology improves segmentation accuracy and highlights the importance of hybrid architectures in handling complex medical imaging tasks. These developments underscore the potential of TuSegNet for real-world healthcare applications in brain tumor diagnosis.\",\"PeriodicalId\":13205,\"journal\":{\"name\":\"IEEE Open Journal of the Computer Society\",\"volume\":\"6 \",\"pages\":\"750-761\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11002687\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Computer Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11002687/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11002687/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑肿瘤分割是至关重要的医学成像,允许知情的诊断和治疗计划。在这项研究中,我们提出了一种新的基于变压器和注意力增强的架构TuSegNet,用于稳健的脑肿瘤分割。该模型结合卷积层和变压器块实现全局上下文感知,结合Atrous空间金字塔池(ASPP)进行多尺度特征提取,并采用通道关注机制集中在肿瘤相关部分。在三个数据集(数据集A、数据集B和组合数据集)上进行评估后,tusegnet实现了最先进的性能,其骰子相似系数(DSC)分别为0.895、0.910和0.930,交集比(IoU)为0.820、0.835和0.860。消融研究验证了ASPP和注意机制的重要性,而对比分析表明,与现有的SOTA模型(如Swin UNet和TransUNet)相比,该模型表现出了出色的性能。提出的方法提高了分割精度,并强调了混合架构在处理复杂医学成像任务中的重要性。这些发展强调了TuSegNet在脑肿瘤诊断中的实际医疗保健应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TuSegNet: A Transformer-Based and Attention-Enhanced Architecture for Brain Tumor Segmentation
Brain tumor segmentation is crucial in medical imaging, allowing informed diagnosis and treatment planning. In this study, we propose TuSegNet, a new transformer-based and attention-enhanced architecture for robust brain tumor segmentation. The model combines convolutional layers with transformer blocks for global context awareness, incorporates Atrous Spatial Pyramid Pooling (ASPP) for multi-scale feature extraction, and employs channel attention mechanisms to concentrate on tumor-relevant parts. Evaluated on three datasets—Dataset A, Dataset B, and a combined dataset—TuSegNet achieves state-of-the-art performance with a Dice Similarity Coefficient (DSC) of 0.895, 0.910, and 0.930, respectively, and an Intersection over Union (IoU) of 0.820, 0.835, and 0.860. Ablation studies validate the importance of ASPP and attention mechanisms, while comparative analysis demonstrates outstanding performance over existing SOTA models such as Swin UNet and TransUNet. The proposed methodology improves segmentation accuracy and highlights the importance of hybrid architectures in handling complex medical imaging tasks. These developments underscore the potential of TuSegNet for real-world healthcare applications in brain tumor diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信