{"title":"ReflexPilot:基于深度强化学习的边缘云协同计算启动感知依赖任务调度","authors":"Wenhao Zou;Zongshuai Zhang;Nina Wang;Yu Tian;Lin Tian","doi":"10.1109/TCC.2025.3555231","DOIUrl":null,"url":null,"abstract":"With the increasing number of devices, the demand for data computation is growing rapidly. In edge-cloud collaborative computing, tasks can be scheduled to servers as interdependent subtasks, enhancing performance through parallel computing. A task is executed in an executor, which must first initialize the runtime environment in a process called task startup. However, most existing research neglects the reuse of executors, leading to considerable delays during task startup. To address this issue, we model the edge-cloud collaborative task scheduling scenario considering executor reuse, task startup, and dependency relationships. We then formulate the dependent task scheduling problem with task startup. To meet real-time demands in edge-cloud collaborative computing, we propose ReflexPilot, an online task scheduling architecture featuring executor management. Building on this architecture, we introduce OTSA-PPO, a task scheduling algorithm based on Proximal Policy Optimization (PPO), and EMA, an advanced executor allocation algorithm. Under constraints of computational and communication resources, ReflexPilot leverages OTSA-PPO for online scheduling of dependent tasks based on current states, while EMA pre-creates and reuses executors to reduce the average task completion time. Extensive simulations demonstrate that ReflexPilot significantly reduces the average task completion time by 31% to 71% compared with existing baselines.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"13 2","pages":"641-654"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ReflexPilot: Startup-Aware Dependent Task Scheduling Based on Deep Reinforcement Learning for Edge-Cloud Collaborative Computing\",\"authors\":\"Wenhao Zou;Zongshuai Zhang;Nina Wang;Yu Tian;Lin Tian\",\"doi\":\"10.1109/TCC.2025.3555231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing number of devices, the demand for data computation is growing rapidly. In edge-cloud collaborative computing, tasks can be scheduled to servers as interdependent subtasks, enhancing performance through parallel computing. A task is executed in an executor, which must first initialize the runtime environment in a process called task startup. However, most existing research neglects the reuse of executors, leading to considerable delays during task startup. To address this issue, we model the edge-cloud collaborative task scheduling scenario considering executor reuse, task startup, and dependency relationships. We then formulate the dependent task scheduling problem with task startup. To meet real-time demands in edge-cloud collaborative computing, we propose ReflexPilot, an online task scheduling architecture featuring executor management. Building on this architecture, we introduce OTSA-PPO, a task scheduling algorithm based on Proximal Policy Optimization (PPO), and EMA, an advanced executor allocation algorithm. Under constraints of computational and communication resources, ReflexPilot leverages OTSA-PPO for online scheduling of dependent tasks based on current states, while EMA pre-creates and reuses executors to reduce the average task completion time. Extensive simulations demonstrate that ReflexPilot significantly reduces the average task completion time by 31% to 71% compared with existing baselines.\",\"PeriodicalId\":13202,\"journal\":{\"name\":\"IEEE Transactions on Cloud Computing\",\"volume\":\"13 2\",\"pages\":\"641-654\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cloud Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10943261/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10943261/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
ReflexPilot: Startup-Aware Dependent Task Scheduling Based on Deep Reinforcement Learning for Edge-Cloud Collaborative Computing
With the increasing number of devices, the demand for data computation is growing rapidly. In edge-cloud collaborative computing, tasks can be scheduled to servers as interdependent subtasks, enhancing performance through parallel computing. A task is executed in an executor, which must first initialize the runtime environment in a process called task startup. However, most existing research neglects the reuse of executors, leading to considerable delays during task startup. To address this issue, we model the edge-cloud collaborative task scheduling scenario considering executor reuse, task startup, and dependency relationships. We then formulate the dependent task scheduling problem with task startup. To meet real-time demands in edge-cloud collaborative computing, we propose ReflexPilot, an online task scheduling architecture featuring executor management. Building on this architecture, we introduce OTSA-PPO, a task scheduling algorithm based on Proximal Policy Optimization (PPO), and EMA, an advanced executor allocation algorithm. Under constraints of computational and communication resources, ReflexPilot leverages OTSA-PPO for online scheduling of dependent tasks based on current states, while EMA pre-creates and reuses executors to reduce the average task completion time. Extensive simulations demonstrate that ReflexPilot significantly reduces the average task completion time by 31% to 71% compared with existing baselines.
期刊介绍:
The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.