H3Ge和Li3Ge的电子态和术语

IF 3.9 Q3 PHYSICS, CONDENSED MATTER
Saloni Sharma , Vijay Maurya , K.B. Joshi
{"title":"H3Ge和Li3Ge的电子态和术语","authors":"Saloni Sharma ,&nbsp;Vijay Maurya ,&nbsp;K.B. Joshi","doi":"10.1016/j.cocom.2025.e01072","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper <em>ab-initio</em> characterization of electronic states, Fermiology and bonding of H<sub>3</sub>Ge and Li<sub>3</sub>Ge are presented. The Full Potential Linearized Augmented Plane Wave method is applied to study the structural properties, the vacancy migration enthalpy H<sup>M</sup> and lattice dynamics. The electronic properties such as band structure, density of states, directional Compton profiles and Fermi surface are presented. The low value of H<sup>M</sup>; 0.43 and 0.41 eV for H<sub>3</sub>Ge and Li<sub>3</sub>Ge, respectively, suggests faster diffusion, high atomic mobility and fast ion transport. The phonon dispersion of Li<sub>3</sub>Ge does not deliver imaginary frequencies. The electronic states reveal the metallic nature of both compounds. The comparison of band structure of H<sub>3</sub>Ge with that of synthetic H-sublattice reveal that Ge gives rise to the formation of bands around Fermi energy and responsible for the metallic behavior. In H<sub>3</sub>Ge the Fermi surfaces constituted by two bands are electron-like while in Li<sub>3</sub>Ge three bands constitute the Fermi surfaces which are hole-like. The quantum oscillations determined using de Haas Van Alphen effect shows fine features of the Fermi surface. Directional Compton profiles show more anisotropy and occupied states in Li<sub>3</sub>Ge than H<sub>3</sub>Ge. The J<sub>110</sub>-J<sub>100</sub> anisotropy is higher than J<sub>111</sub>-J<sub>100</sub> in both compounds. These observations are well captured by the branches of FS of the compounds. The auto correlation function gives 3.61 and 7.24 a.u bond lengths of H-H, Ge-Ge bonds in H<sub>3</sub>Ge. Similarly 4.48 and 8.96 a.u. bond lengths are obtained for Li-Li and Ge-Ge bonds in Li<sub>3</sub>Ge. The Ge-Ge, H-H/Li-Li interactions dominate in formation of bands and bonds in the two compounds.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"44 ","pages":"Article e01072"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic states and fermiology of H3Ge and Li3Ge\",\"authors\":\"Saloni Sharma ,&nbsp;Vijay Maurya ,&nbsp;K.B. Joshi\",\"doi\":\"10.1016/j.cocom.2025.e01072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper <em>ab-initio</em> characterization of electronic states, Fermiology and bonding of H<sub>3</sub>Ge and Li<sub>3</sub>Ge are presented. The Full Potential Linearized Augmented Plane Wave method is applied to study the structural properties, the vacancy migration enthalpy H<sup>M</sup> and lattice dynamics. The electronic properties such as band structure, density of states, directional Compton profiles and Fermi surface are presented. The low value of H<sup>M</sup>; 0.43 and 0.41 eV for H<sub>3</sub>Ge and Li<sub>3</sub>Ge, respectively, suggests faster diffusion, high atomic mobility and fast ion transport. The phonon dispersion of Li<sub>3</sub>Ge does not deliver imaginary frequencies. The electronic states reveal the metallic nature of both compounds. The comparison of band structure of H<sub>3</sub>Ge with that of synthetic H-sublattice reveal that Ge gives rise to the formation of bands around Fermi energy and responsible for the metallic behavior. In H<sub>3</sub>Ge the Fermi surfaces constituted by two bands are electron-like while in Li<sub>3</sub>Ge three bands constitute the Fermi surfaces which are hole-like. The quantum oscillations determined using de Haas Van Alphen effect shows fine features of the Fermi surface. Directional Compton profiles show more anisotropy and occupied states in Li<sub>3</sub>Ge than H<sub>3</sub>Ge. The J<sub>110</sub>-J<sub>100</sub> anisotropy is higher than J<sub>111</sub>-J<sub>100</sub> in both compounds. These observations are well captured by the branches of FS of the compounds. The auto correlation function gives 3.61 and 7.24 a.u bond lengths of H-H, Ge-Ge bonds in H<sub>3</sub>Ge. Similarly 4.48 and 8.96 a.u. bond lengths are obtained for Li-Li and Ge-Ge bonds in Li<sub>3</sub>Ge. The Ge-Ge, H-H/Li-Li interactions dominate in formation of bands and bonds in the two compounds.</div></div>\",\"PeriodicalId\":46322,\"journal\":{\"name\":\"Computational Condensed Matter\",\"volume\":\"44 \",\"pages\":\"Article e01072\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352214325000711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325000711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了H3Ge和Li3Ge的电子态、费米学和成键的从头算表征。应用全势线性化增广平面波方法研究了其结构性质、空位迁移焓HM和晶格动力学。给出了带结构、态密度、定向康普顿分布和费米表面等电子特性。HM值低;H3Ge和Li3Ge分别为0.43和0.41 eV,表明扩散更快,原子迁移率高,离子输运快。Li3Ge的声子色散不提供虚频率。电子态揭示了这两种化合物的金属性质。H3Ge的能带结构与合成h亚晶格的能带结构的比较表明,Ge在费米能周围形成能带,并对金属行为负责。在H3Ge中,由两个带组成的费米面是类电子的,而在Li3Ge中,三个带组成的费米面是类空穴的。利用德哈斯范阿尔芬效应测定的量子振荡显示出费米表面的精细特征。定向康普顿剖面显示Li3Ge比H3Ge具有更多的各向异性和占位态。J110-J100各向异性均高于J111-J100。这些观察结果被化合物的FS分支很好地捕获。自相关函数给出H3Ge中H-H、Ge-Ge键的键长分别为3.61和7.24 a.u。Li3Ge中Li-Li和Ge-Ge键的键长分别为4.48和8.96 a.u.。在这两种化合物中,Ge-Ge、H-H/Li-Li相互作用主导了能带和键的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electronic states and fermiology of H3Ge and Li3Ge

Electronic states and fermiology of H3Ge and Li3Ge
In this paper ab-initio characterization of electronic states, Fermiology and bonding of H3Ge and Li3Ge are presented. The Full Potential Linearized Augmented Plane Wave method is applied to study the structural properties, the vacancy migration enthalpy HM and lattice dynamics. The electronic properties such as band structure, density of states, directional Compton profiles and Fermi surface are presented. The low value of HM; 0.43 and 0.41 eV for H3Ge and Li3Ge, respectively, suggests faster diffusion, high atomic mobility and fast ion transport. The phonon dispersion of Li3Ge does not deliver imaginary frequencies. The electronic states reveal the metallic nature of both compounds. The comparison of band structure of H3Ge with that of synthetic H-sublattice reveal that Ge gives rise to the formation of bands around Fermi energy and responsible for the metallic behavior. In H3Ge the Fermi surfaces constituted by two bands are electron-like while in Li3Ge three bands constitute the Fermi surfaces which are hole-like. The quantum oscillations determined using de Haas Van Alphen effect shows fine features of the Fermi surface. Directional Compton profiles show more anisotropy and occupied states in Li3Ge than H3Ge. The J110-J100 anisotropy is higher than J111-J100 in both compounds. These observations are well captured by the branches of FS of the compounds. The auto correlation function gives 3.61 and 7.24 a.u bond lengths of H-H, Ge-Ge bonds in H3Ge. Similarly 4.48 and 8.96 a.u. bond lengths are obtained for Li-Li and Ge-Ge bonds in Li3Ge. The Ge-Ge, H-H/Li-Li interactions dominate in formation of bands and bonds in the two compounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Condensed Matter
Computational Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
3.70
自引率
9.50%
发文量
134
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信