{"title":"基于均质化技术的石柱加固基础简化分析方法","authors":"Fangyue Luo , Yang Li , Yangping Yao , Ga Zhang","doi":"10.1016/j.trgeo.2025.101601","DOIUrl":null,"url":null,"abstract":"<div><div>Stone columns are a resultful measure to increase the bearing capacity of soft or liquefiable foundations. The centrifuge model test and finite element method were employed to investigate the bearing capacity and deformation behavior of the stone column-reinforced foundation. Study shows that the modulus of the reinforced foundation exhibits significant anisotropy. A bulging deformation area is identified in the reinforced foundation where obvious horizontal deformation of the stone column occurs. The ratio of the column stress and soil stress is observed to change violently in this area. A homogenization technique is consequently deduced by employing the column-soil stress ratio as a key variable. The definition of the column-soil stress ratio is extended to reasonably describe the column-soil interaction under different stress levels and its approximation method is given. Based on the Duncan- Chang E-ν model, a simplified method using the homogenization technique is proposed for the stone column reinforced foundation. The proposed homogenization technique and simplified method have been validated by the centrifuge model tests and finite element analyses. This method properly addresses the nonlinear spatial characteristic of deformation and the anisotropy of the stone column reinforced foundation.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"53 ","pages":"Article 101601"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplified Analysis Method of Stone Column Reinforced Foundations Based on Homogenization Technique\",\"authors\":\"Fangyue Luo , Yang Li , Yangping Yao , Ga Zhang\",\"doi\":\"10.1016/j.trgeo.2025.101601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stone columns are a resultful measure to increase the bearing capacity of soft or liquefiable foundations. The centrifuge model test and finite element method were employed to investigate the bearing capacity and deformation behavior of the stone column-reinforced foundation. Study shows that the modulus of the reinforced foundation exhibits significant anisotropy. A bulging deformation area is identified in the reinforced foundation where obvious horizontal deformation of the stone column occurs. The ratio of the column stress and soil stress is observed to change violently in this area. A homogenization technique is consequently deduced by employing the column-soil stress ratio as a key variable. The definition of the column-soil stress ratio is extended to reasonably describe the column-soil interaction under different stress levels and its approximation method is given. Based on the Duncan- Chang E-ν model, a simplified method using the homogenization technique is proposed for the stone column reinforced foundation. The proposed homogenization technique and simplified method have been validated by the centrifuge model tests and finite element analyses. This method properly addresses the nonlinear spatial characteristic of deformation and the anisotropy of the stone column reinforced foundation.</div></div>\",\"PeriodicalId\":56013,\"journal\":{\"name\":\"Transportation Geotechnics\",\"volume\":\"53 \",\"pages\":\"Article 101601\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214391225001205\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391225001205","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Simplified Analysis Method of Stone Column Reinforced Foundations Based on Homogenization Technique
Stone columns are a resultful measure to increase the bearing capacity of soft or liquefiable foundations. The centrifuge model test and finite element method were employed to investigate the bearing capacity and deformation behavior of the stone column-reinforced foundation. Study shows that the modulus of the reinforced foundation exhibits significant anisotropy. A bulging deformation area is identified in the reinforced foundation where obvious horizontal deformation of the stone column occurs. The ratio of the column stress and soil stress is observed to change violently in this area. A homogenization technique is consequently deduced by employing the column-soil stress ratio as a key variable. The definition of the column-soil stress ratio is extended to reasonably describe the column-soil interaction under different stress levels and its approximation method is given. Based on the Duncan- Chang E-ν model, a simplified method using the homogenization technique is proposed for the stone column reinforced foundation. The proposed homogenization technique and simplified method have been validated by the centrifuge model tests and finite element analyses. This method properly addresses the nonlinear spatial characteristic of deformation and the anisotropy of the stone column reinforced foundation.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.