基于均质化技术的石柱加固基础简化分析方法

IF 4.9 2区 工程技术 Q1 ENGINEERING, CIVIL
Fangyue Luo , Yang Li , Yangping Yao , Ga Zhang
{"title":"基于均质化技术的石柱加固基础简化分析方法","authors":"Fangyue Luo ,&nbsp;Yang Li ,&nbsp;Yangping Yao ,&nbsp;Ga Zhang","doi":"10.1016/j.trgeo.2025.101601","DOIUrl":null,"url":null,"abstract":"<div><div>Stone columns are a resultful measure to increase the bearing capacity of soft or liquefiable foundations. The centrifuge model test and finite element method were employed to investigate the bearing capacity and deformation behavior of the stone column-reinforced foundation. Study shows that the modulus of the reinforced foundation exhibits significant anisotropy. A bulging deformation area is identified in the reinforced foundation where obvious horizontal deformation of the stone column occurs. The ratio of the column stress and soil stress is observed to change violently in this area. A homogenization technique is consequently deduced by employing the column-soil stress ratio as a key variable. The definition of the column-soil stress ratio is extended to reasonably describe the column-soil interaction under different stress levels and its approximation method is given. Based on the Duncan- Chang E-ν model, a simplified method using the homogenization technique is proposed for the stone column reinforced foundation. The proposed homogenization technique and simplified method have been validated by the centrifuge model tests and finite element analyses. This method properly addresses the nonlinear spatial characteristic of deformation and the anisotropy of the stone column reinforced foundation.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"53 ","pages":"Article 101601"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplified Analysis Method of Stone Column Reinforced Foundations Based on Homogenization Technique\",\"authors\":\"Fangyue Luo ,&nbsp;Yang Li ,&nbsp;Yangping Yao ,&nbsp;Ga Zhang\",\"doi\":\"10.1016/j.trgeo.2025.101601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stone columns are a resultful measure to increase the bearing capacity of soft or liquefiable foundations. The centrifuge model test and finite element method were employed to investigate the bearing capacity and deformation behavior of the stone column-reinforced foundation. Study shows that the modulus of the reinforced foundation exhibits significant anisotropy. A bulging deformation area is identified in the reinforced foundation where obvious horizontal deformation of the stone column occurs. The ratio of the column stress and soil stress is observed to change violently in this area. A homogenization technique is consequently deduced by employing the column-soil stress ratio as a key variable. The definition of the column-soil stress ratio is extended to reasonably describe the column-soil interaction under different stress levels and its approximation method is given. Based on the Duncan- Chang E-ν model, a simplified method using the homogenization technique is proposed for the stone column reinforced foundation. The proposed homogenization technique and simplified method have been validated by the centrifuge model tests and finite element analyses. This method properly addresses the nonlinear spatial characteristic of deformation and the anisotropy of the stone column reinforced foundation.</div></div>\",\"PeriodicalId\":56013,\"journal\":{\"name\":\"Transportation Geotechnics\",\"volume\":\"53 \",\"pages\":\"Article 101601\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214391225001205\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391225001205","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

石柱是提高软质或可液化地基承载力的有效措施。采用离心模型试验和有限元法对石柱加筋基础的承载力和变形特性进行了研究。研究表明,加筋地基的模量表现出明显的各向异性。在加强型基础上发现了一个凸起变形区,在此区域内,石柱发生了明显的水平变形。该地区柱应力与土应力之比变化剧烈。采用柱土应力比作为关键变量,推导出均匀化技术。推广柱土应力比的定义,合理地描述了不同应力水平下柱土相互作用,并给出了其近似方法。基于Duncan- Chang E-ν模型,提出了石柱加固基础的均质化简化方法。通过离心模型试验和有限元分析验证了所提出的均质化技术和简化方法的有效性。该方法较好地解决了石柱加固基础变形的非线性空间特性和各向异性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplified Analysis Method of Stone Column Reinforced Foundations Based on Homogenization Technique
Stone columns are a resultful measure to increase the bearing capacity of soft or liquefiable foundations. The centrifuge model test and finite element method were employed to investigate the bearing capacity and deformation behavior of the stone column-reinforced foundation. Study shows that the modulus of the reinforced foundation exhibits significant anisotropy. A bulging deformation area is identified in the reinforced foundation where obvious horizontal deformation of the stone column occurs. The ratio of the column stress and soil stress is observed to change violently in this area. A homogenization technique is consequently deduced by employing the column-soil stress ratio as a key variable. The definition of the column-soil stress ratio is extended to reasonably describe the column-soil interaction under different stress levels and its approximation method is given. Based on the Duncan- Chang E-ν model, a simplified method using the homogenization technique is proposed for the stone column reinforced foundation. The proposed homogenization technique and simplified method have been validated by the centrifuge model tests and finite element analyses. This method properly addresses the nonlinear spatial characteristic of deformation and the anisotropy of the stone column reinforced foundation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Geotechnics
Transportation Geotechnics Social Sciences-Transportation
CiteScore
8.10
自引率
11.30%
发文量
194
审稿时长
51 days
期刊介绍: Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信