英语、泰米尔语和僧伽罗语的多路并行命名实体注释语料库

Surangika Ranathunga , Asanka Ranasinghe , Janaka Shamal , Ayodya Dandeniya , Rashmi Galappaththi , Malithi Samaraweera
{"title":"英语、泰米尔语和僧伽罗语的多路并行命名实体注释语料库","authors":"Surangika Ranathunga ,&nbsp;Asanka Ranasinghe ,&nbsp;Janaka Shamal ,&nbsp;Ayodya Dandeniya ,&nbsp;Rashmi Galappaththi ,&nbsp;Malithi Samaraweera","doi":"10.1016/j.nlp.2025.100160","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a multi-way parallel English-Tamil-Sinhala corpus annotated with Named Entities (NEs), where Sinhala and Tamil are low-resource languages. Using pre-trained multilingual Language Models (mLMs), we establish new benchmark Named Entity Recognition (NER) results on this dataset for Sinhala and Tamil. We also carry out a detailed investigation on the NER capabilities of different types of LMs. Finally, we demonstrate the utility of our NER system on a low-resource Neural Machine Translation (NMT) task. Our dataset is publicly released: <span><span>https://github.com/suralk/multiNER</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"11 ","pages":"Article 100160"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-way parallel named entity annotated corpus for English, Tamil and Sinhala\",\"authors\":\"Surangika Ranathunga ,&nbsp;Asanka Ranasinghe ,&nbsp;Janaka Shamal ,&nbsp;Ayodya Dandeniya ,&nbsp;Rashmi Galappaththi ,&nbsp;Malithi Samaraweera\",\"doi\":\"10.1016/j.nlp.2025.100160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a multi-way parallel English-Tamil-Sinhala corpus annotated with Named Entities (NEs), where Sinhala and Tamil are low-resource languages. Using pre-trained multilingual Language Models (mLMs), we establish new benchmark Named Entity Recognition (NER) results on this dataset for Sinhala and Tamil. We also carry out a detailed investigation on the NER capabilities of different types of LMs. Finally, we demonstrate the utility of our NER system on a low-resource Neural Machine Translation (NMT) task. Our dataset is publicly released: <span><span>https://github.com/suralk/multiNER</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":100944,\"journal\":{\"name\":\"Natural Language Processing Journal\",\"volume\":\"11 \",\"pages\":\"Article 100160\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Processing Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949719125000366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719125000366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个以命名实体(NEs)注释的多路并行英语-泰米尔语-僧伽罗语语料库,其中僧伽罗语和泰米尔语是低资源语言。使用预训练的多语言语言模型(mLMs),我们在该数据集上为僧伽罗语和泰米尔语建立了新的基准命名实体识别(NER)结果。我们还对不同类型LMs的NER能力进行了详细的调查。最后,我们展示了我们的NER系统在低资源神经机器翻译(NMT)任务中的实用性。我们的数据集公开发布:https://github.com/suralk/multiNER。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-way parallel named entity annotated corpus for English, Tamil and Sinhala
This paper presents a multi-way parallel English-Tamil-Sinhala corpus annotated with Named Entities (NEs), where Sinhala and Tamil are low-resource languages. Using pre-trained multilingual Language Models (mLMs), we establish new benchmark Named Entity Recognition (NER) results on this dataset for Sinhala and Tamil. We also carry out a detailed investigation on the NER capabilities of different types of LMs. Finally, we demonstrate the utility of our NER system on a low-resource Neural Machine Translation (NMT) task. Our dataset is publicly released: https://github.com/suralk/multiNER.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信