Ayoub Ben-Ameur;Andrea Araldo;Tijani Chahed;György Dán
{"title":"多租户边缘计算中的缓存分配:一种基于在线模型的强化学习方法","authors":"Ayoub Ben-Ameur;Andrea Araldo;Tijani Chahed;György Dán","doi":"10.1109/TCC.2025.3538158","DOIUrl":null,"url":null,"abstract":"We consider a Network Operator (NO) that owns Edge Computing (EC) resources, virtualizes them and lets third party Service Providers (SPs) run their services, using the allocated slice of resources. We focus on one specific resource, i.e., cache space, and on the problem of how to allocate it among several SPs in order to minimize the backhaul traffic. Due to confidentiality guarantees, the NO cannot observe the nature of the traffic of SPs, which is encrypted. Allocation decisions are thus challenging, since they must be taken solely based on observed monitoring information. Another challenge is that not all the traffic is cacheable. We propose a data-driven cache allocation strategy, based on Reinforcement Learning (RL). Unlike most RL applications, in which the decision policy is learned offline on a simulator, we assume no previous knowledge is available to build such a simulator. We thus apply RL in an <italic>online</i> fashion, i.e., the model and the policy are learned by directly perturbing and monitoring the actual system. Since perturbations generate spurious traffic, we thus need to limit perturbations. This requires learning to be extremely efficient. To this aim, we devise a strategy that learns an approximation of the cost function, while interacting with the system. We then use such an approximation in a Model-Based RL (MB-RL) to speed up convergence. We prove analytically that our strategy brings cache allocation boundedly close to the optimum and stably remains in such an allocation. We show in simulations that such convergence is obtained within few minutes. We also study its fairness, its sensitivity to several scenario characteristics and compare it with a method from the state-of-the-art.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"13 2","pages":"459-472"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cache Allocation in Multi-Tenant Edge Computing: An Online Model-Based Reinforcement Learning Approach\",\"authors\":\"Ayoub Ben-Ameur;Andrea Araldo;Tijani Chahed;György Dán\",\"doi\":\"10.1109/TCC.2025.3538158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a Network Operator (NO) that owns Edge Computing (EC) resources, virtualizes them and lets third party Service Providers (SPs) run their services, using the allocated slice of resources. We focus on one specific resource, i.e., cache space, and on the problem of how to allocate it among several SPs in order to minimize the backhaul traffic. Due to confidentiality guarantees, the NO cannot observe the nature of the traffic of SPs, which is encrypted. Allocation decisions are thus challenging, since they must be taken solely based on observed monitoring information. Another challenge is that not all the traffic is cacheable. We propose a data-driven cache allocation strategy, based on Reinforcement Learning (RL). Unlike most RL applications, in which the decision policy is learned offline on a simulator, we assume no previous knowledge is available to build such a simulator. We thus apply RL in an <italic>online</i> fashion, i.e., the model and the policy are learned by directly perturbing and monitoring the actual system. Since perturbations generate spurious traffic, we thus need to limit perturbations. This requires learning to be extremely efficient. To this aim, we devise a strategy that learns an approximation of the cost function, while interacting with the system. We then use such an approximation in a Model-Based RL (MB-RL) to speed up convergence. We prove analytically that our strategy brings cache allocation boundedly close to the optimum and stably remains in such an allocation. We show in simulations that such convergence is obtained within few minutes. We also study its fairness, its sensitivity to several scenario characteristics and compare it with a method from the state-of-the-art.\",\"PeriodicalId\":13202,\"journal\":{\"name\":\"IEEE Transactions on Cloud Computing\",\"volume\":\"13 2\",\"pages\":\"459-472\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cloud Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10870410/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10870410/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Cache Allocation in Multi-Tenant Edge Computing: An Online Model-Based Reinforcement Learning Approach
We consider a Network Operator (NO) that owns Edge Computing (EC) resources, virtualizes them and lets third party Service Providers (SPs) run their services, using the allocated slice of resources. We focus on one specific resource, i.e., cache space, and on the problem of how to allocate it among several SPs in order to minimize the backhaul traffic. Due to confidentiality guarantees, the NO cannot observe the nature of the traffic of SPs, which is encrypted. Allocation decisions are thus challenging, since they must be taken solely based on observed monitoring information. Another challenge is that not all the traffic is cacheable. We propose a data-driven cache allocation strategy, based on Reinforcement Learning (RL). Unlike most RL applications, in which the decision policy is learned offline on a simulator, we assume no previous knowledge is available to build such a simulator. We thus apply RL in an online fashion, i.e., the model and the policy are learned by directly perturbing and monitoring the actual system. Since perturbations generate spurious traffic, we thus need to limit perturbations. This requires learning to be extremely efficient. To this aim, we devise a strategy that learns an approximation of the cost function, while interacting with the system. We then use such an approximation in a Model-Based RL (MB-RL) to speed up convergence. We prove analytically that our strategy brings cache allocation boundedly close to the optimum and stably remains in such an allocation. We show in simulations that such convergence is obtained within few minutes. We also study its fairness, its sensitivity to several scenario characteristics and compare it with a method from the state-of-the-art.
期刊介绍:
The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.